
CODEM User Manual

François Rioux, Jean-Philippe Gagnon

LTI

2700, De Carthagène,

Québec, Qc

Canada

G2B 5M4

Scientific Authority: M. B. DuCharme (418) 844-4000 Ext.: 4224

Defence R&D Canada – Valcartier
Contract Report

DRDC Valcartier CR 2010-518

September 2010

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

CODEM User Manual

September 2010

 Prepared By

 François Rioux – LTI

 Jean-Philippe Gagnon – LTI

 Prepared For

Michel B. DuCharme, Daniel Lafond and Michel Lizotte

DRDC - Valcartier

 IMAGE-SCE

Authors

François Rioux – LTI

 Jean-Philippe Gagnon – LTI

Reviewed by

 Daniel Lafond – DRDC - Valcartier

© Copyright, LTI inc.

This work is copyright. No part may be reproduced without written permission of LTI inc.

2700, De Carthagène,

Québec, Qc

Canada

G2B 5M4

Website: www.ltinfo.ca

E-mail: contact@ltinfo.ca

Release date :

September 2010

Category :

Final Project Report

Version :

2.1

Comments :

http://www.ltinfo.ca/�
mailto:contact@ltinfo.ca�

 - September 2010 i

Abstract

This report details the implementation of an experimental platform that will be used in order to study

how humans understand complex systems / situations. It implements a microworld as well as a scenario

building tool that facilitates the development of a range of scenarios using a common platform. A user

guide of the platform is first provided in this report. It describes how to use the user interface that

enables interaction with the situation and how to configure its various parameters. The scenario

building tool is also presented. It allows adding data structures to a scenario that will enable/disable

associated functionalities. It exploits a simulator that was built as part of the IMAGE project in order to

simulate system dynamics, the formalism that was chosen to represent a complex situation. Finally,

additional technical details are provided in the appendices.

Résumé

Ce rapport décrit l’implantation d’une plateforme expérimentale visant à étudier la manière dont les

humains arrivent à comprendre des systèmes / situations complexes. Le logiciel développé implante un

micromonde ainsi qu’un outil qui facilite le développement de scénarios divers à l’aide d’une plateforme

unique. Ce rapport fournit tout d’abord un guide de l’utilisateur de la plateforme expérimentale. Il décrit

comment l’interface utilisateur devrait être utilisée ainsi que la manière de configurer les différents

paramètres qui rendent cette plateforme si flexible. L’outil de génération de scénarios est par la suite

détaillé. Il permet l’ajout de structures de données dans un scénario qui viendront activer/désactiver les

fonctionnalités associées. Cet outil exploite un simulateur développé dans le cadre du projet IMAGE, afin

de simuler la dynamique des systèmes, le formalisme choisi afin de simuler des situations complexes.

Finalement, plusieurs détails techniques sont fournis en annexe.

 - September 2010 i

This page is intentionally left blank.

 - September 2010 ii

Executive Summary

The current experimental platform will allow experimenters to study how humans come to understand

complex systems / situations. Participants need to complete mandates that involve one or more human

participants who have to make decisions on possible interventions in order to steer the system (or

situation) to a desired state. For that purpose, a highly configurable and generic user interface was built.

It allows for a participant to perceive the current situation, inspect influence diagrams describing the

known cause-effect relationships in the system, make predictions about what the situation will look like

in the next turn, make decisions by distributing action points on interventions, reading information

snippets and taking notes on what the current strategy is. In addition to the latter content, the user

interface provides useful feedback at the end of a turn and at the end of a mandate and displaying

information about the current state on each turn. Several participants at a time can contribute to the

evolution of a simulated situation, either in collaboration or in competition. The present document

constitutes a complete user guide on how to use the platform effectively.

This report first introduces how to use the user interface associated to the experimental platform. It was

built in such a way that it supports the arrangement of visual components associated to an arbitrary

number of variables and interventions; the layout of the components will be automatically updated

according to the elements specified in the scenario editor. It is thus completely generic, not tied to a

given scenario. The platform also provides software hooks that allow for additional user-defined

features, two of which are provided as examples. The appendices of this report contain technical details

regarding the content of user logs and methods that should be overridden in order to implement a

software hook.

The last sections of this report detail how to develop a scenario from scratch. For the purpose of

facilitating scenario building and avoiding source code development by users who are not proficient at

it, a scenario editor was developed. This editor reads a configuration file that defines every single

possible parameter (i.e. name, type, description) in different parts of simulation entities, and then fills a

user interface with the parameter values found in a scenario file. Parameters can then be modified,

variables and action points created / removed, making it possible for users to build a scenario that will

be written directly to a CODEM scenario file (“cdm” extension), and loaded by a simulator thereafter.

 - September 2010 iii

Sommaire

La plateforme expérimentale développée dans le cadre de ce projet permettra à un expérimentateur

d’étudier comment les humains en arrivent à comprendre des systèmes / situations complexes. Les

participants doivent compléter des mandats impliquant un ou plusieurs participants qui ont à prendre

des décisions sur des interventions possibles afin d’amener la situation complexe vers un état désiré.

Afin de supporter les expérimentateurs dans leurs recherches sur la prise de décision en situation

complexe, une interface utilisateur des plus flexibles a été développée. Elle permet aux participants de

percevoir l’état courant de la situation, d’inspecter le diagramme d’influence décrivant les relations de

cause à effet connues dans un système, de prédire l’état de la situation au tour suivant, de prendre des

décisions en allouant des points d’actions sur différentes interventions, de lire des informations

pertinentes sur l’état de la situation, ou de prendre des notes sur la stratégie adoptée. En plus des

fonctionnalités précédentes, l’interface fournit du feedback à la fin de chaque tour complété tout en

gérant adéquatement la collaboration / compétition entre plusieurs participants. Le présent document

est un guide de l’utilisateur complet sur comment utiliser la plateforme de manière efficace.

Ce rapport introduit tout d’abord l’interface utilisateur associée à la plateforme expérimentale. Cette

interface a été conçue d’une manière telle qu’elle supporte le réarrangement automatique de ses

composantes graphiques en fonction du nombre de variables ou interventions présentes dans le

système. La plateforme définit également des interfaces logicielles qu’il est possible d’implanter afin

d’ajouter des fonctionnalités pour un scénario donné. Deux exemples de telles fonctionnalités sont

fournis dans ce rapport. Finalement, les annexes fournissent des détails supplémentaires sur le contenu

des fichiers de log ainsi que sur les méthodes qui doivent être implantées afin de bien utiliser les

extensions logicielles.

Les dernières sections de ce rapport détaillent un éditeur graphique qui permet la création de scénarios

de manière générique tout en assurant la validité du contenu ajouté par un utilisateur. En lisant un

fichier de configuration, cet éditeur connaît tous les paramètres que peut contenir un modèle, et les

rend disponibles à l’utilisateur. Ce dernier peut donc modifier les paramètres à sa guise et sauvegarder

le résultat de son travail dans un fichier de scénario CODEM (extension « cdm ») qui peut être chargé

directement dans un simulateur. Le développement d’un scénario complet en est ainsi facilité.

 - September 2010 iv

Table of Contents

Abstract ... i

Résumé .. i

Executive Summary ... ii

Sommaire ... iii

Table of Contents ... iv

List of Figures ... vi

List of Tables .. viii

1 Introduction .. 1

2 User Guide of the Experimental Platform ... 2

2.1 Situation Tab .. 3

2.2 Relations Tab ... 4

2.3 Prediction Tab .. 6

2.4 Decision Tab... 7

2.5 Info Tab.. 8

2.6 Notes Tab... 12

2.7 End of Turn Feedback Screen ... 13

2.8 Setting the Platform to Support Multiple Participants .. 15

2.9 Log Files ... 16

2.10 Language Configuration ... 16

3 Scenario Editor’s User Guide .. 17

3.1 Generic Scenario Parameters ... 18

3.2 Description of Variables ... 23

3.2.1 Mutual Influences... 26

3.2.2 Conditional Mutual Influences .. 28

 - September 2010 v

3.3 Description of Action Points ... 30

3.3.1 Interventions .. 31

3.3.2 Variable Influence on Action Points .. 34

3.3.3 Player-Specific Representation of Variables .. 35

3.4 Description of Custom Events... 36

3.5 Description of Information Text ... 37

3.6 Configuration of the Scenario Editor .. 39

3.7 Extensions .. 39

3.7.1 “Insurgents Strategy” Extension ... 41

3.7.2 “Stable Prediction Error” Extension .. 41

3.7.3 Genetic Algorithms for Finding Optimal Solutions ... 42

4 Conclusion ... 43

5 References ... 44

A. Log Files Content Description ... 45

A.1 Participant’s Log Description .. 45

A.2 Game’s Log Description .. 51

A.3 Summary Logs .. 53

B. Text Labels of the User Interface .. 54

C. Details of the “UIDispatchAdapterI” Interface .. 58

D. Quick Start Reference Guide .. 64

D.1 Walkthrough .. 64

D.1.1 Single User ... 64

D.1.2 Multiple Users (Cooperative or Competitive) .. 64

D.2 Important Files ... 65

D.3 Important Operations in the Experimental Platform ... 66

D.4 Troubleshooting of the Experimental Platform ... 66

E. From Conceptual Representations to System Dynamics Simulation .. 68

E.1 Conceptual Representation with CoGUI ... 68

E.2 Agent-Based Simulation Using Conceptual Representations ... 69

E.3 Agent-Based System Dynamics Simulation ... 71

 - September 2010 vi

List of Figures

Figure 1 - Situation Tab .. 4

Figure 2 - Relation Tab ... 5

Figure 3 - Chart of Influence .. 6

Figure 4 - Prediction Tab .. 7

Figure 5 - Decision Tab .. 8

Figure 6 - Info Tab (Messages) ... 9

Figure 7 - Info Tab (Diagram) ... 10

Figure 8 - Info Tab (History) ... 11

Figure 9 - Info Tab (Feedbacks) .. 12

Figure 10 - Notes Tab ... 13

Figure 11 - Feedback screen (End of turn Summary) .. 14

Figure 12 - Feedback Screen (Prediction Error) .. 15

Figure 13 - Scenario parameters "Main Dialog Parameters" group ... 18

Figure 14 - Scenario parameters "End of Game Parameters" group ... 18

Figure 15 - Scenario parameters "Game Mode Parameters" group .. 19

Figure 16 - Scenario parameters "Transition and End of Mandate Parameters" group 19

Figure 17 - Scenario parameters "Instances" group .. 23

Figure 18 - Variable addition and removal controls .. 23

Figure 19 - Simple variables parameters .. 24

Figure 20 - Details of the color categories for variables values ... 24

Figure 21 - Sample chart for the influence editor ... 26

Figure 22 - Variables' mutual influences parameters .. 27

Figure 23 - Variables' conditional mutual influences parameters ... 29

Figure 24 – Action points addition and removal controls ... 30

Figure 25 - Action points base parameters ... 30

Figure 26 - Interventions parameters ... 32

Figure 27 – Variable influence on action points .. 34

Figure 28 – Player-specific representation of variables .. 35

Figure 29 - Custom events parameters .. 36

Figure 30 - Info text parameters .. 38

Figure 31 - Insurgents strategy parameters .. 39

 - September 2010 vii

Figure 32 - Mean prediction error as a function of turn number showing the prediction error’s slope in a

time window ... 42

Figure 33 - Example of a conceptual graph in CoGUI .. 69

Figure 34 - Scenario generation process in IMAGE ... 71

Figure 35 - Conceptual graph hierarchy from the experimental platform ... 73

Figure 36 - Sequence of behaviours executed in the custom agent-based simulator 74

 - September 2010 viii

List of Tables

Table 1 - Detailed parameters of a scenario ... 19

Table 2 - Details of simple variables parameters .. 24

Table 3 - Details of "Influences" parameters .. 27

Table 4 - Summary of Javascript operators .. 29

Table 5 - Details of parameters associated to Action Points ... 30

Table 6 - Details of basic Interventions parameters .. 32

Table 7 - Details of parameters associated to Intervention Effects ... 33

Table 8 - Details of variable influence on action points parameters .. 34

Table 9 - Details of the Custom Events parameters .. 37

Table 10 - Details of Info Text parameters ... 38

 - September 2010 ix

This page is intentionally left blank.

 - September 2010 1

11 IInnttrroodduuccttiioonn

The complex decision making experimental platform, CODEM, is a generic and flexible test bed that is

intended to be a shareable research tool to stimulate coordinated and synergetic research on complex

dynamic problem solving. One of the formal requirements about the current experimental platform is

that a typical scenario should run without the need for the user (either an experimenter or a participant)

to write a single line of source code. Due to this requirement, the experimental platform is constrained

to allow the development of a specific class of models called system dynamics models (Sterman, 2000),

which define a situation using numerical variables and where influences between variables are positive

or negative numerical effects. Additional details will be provided in the following sections.

The current experimental platform involves one or more human participants that have to make

decisions on possible interventions in order to steer the system (or situation) to a desired state. For that

purpose, a highly configurable and generic user interface framework was built. It allows for a participant

to perceive the current situation, inspect influence diagrams describing the known cause-effect

relationships in the system, make predictions about what the situation will look like in the next turn,

make decisions by distributing action points on interventions, reading information snippets and taking

notes on what the current strategy is. In addition to the latter content, the user interface framework

provides useful feedback at the end of a turn and at the end of a mandate while adequately displaying

the current state of a turn. Several participants at a time can contribute to the evolution of a simulated

situation, either working collaboratively or competitively. The present document constitutes a complete

user guide on how to use the platform effectively. A quick start reference guide is provided in Appendix

D.

A scenario editor was built in order to facilitate the development of a specific scenario, reading and

writing directly CDM scenario files. In order to avoid the need of writing Java source code, a generic

software architecture was put in place, which allows for arbitrary number of participants, variables and

interventions to be defined.

 - September 2010 2

22 UUsseerr GGuuiiddee ooff tthhee EExxppeerriimmeennttaall

PPllaattffoorrmm

The main goal of CODEM is to study how humans deal with complex situations. The simulated scenarios

take the form of a turn-based strategy game, similar to previous work on complex problem solving

(Dörner, 1996). Therefore, a user interface controlling the progress of a game was built and integrated

to the platform. It has the following objectives:

- Provide the user with a view of the current situation;

- Show to the user the relations between the variables describing the situation;

- Allow the user to make predictions about the state of the situation in the next turn;

- Allow the user to influence the current situation by making decisions that consist of allocating

action points on various interventions;

- Allow the user to retrieve information about the situation and the decisions history;

- Allow the user to take notes during his mandate;

- Provide the user with a feedback on variables changes that occurred during a turn and on the

provenance of these changes, as well as his prediction error.

The experimental platform’s user interface was built in such a way that it supports the arrangement of

visual components associated to an arbitrary number of variables and interventions; the layout of the

components will be automatically updated according to the elements specified in the scenario editor.

Most of the features can also be enabled and/or disabled via configuration parameters available in the

scenario editor (see Section 3.1 for complete details).

Prior to starting CODEM, it is recommended to register file extensions “.cdm” to the CODEM executable,

which will allow starting the platform via a double-click on a valid scenario file (“.cdm” extension). In

order to do so, simply open the scenario editor via “CODEM_ScenarioEditor.bat” and choose in the

menu bar “Config / Register CDM files”. If the registration succeeds, at computer restart, “.cdm” files

will be associated to a new icon that is the CODEM logo. Double-clicking on such a file will launch

CODEM. Note that scenario files are stored in the “data” directory. Just after CODEM is started and

 - September 2010 3

when the “Identify User” parameter is set, the platform asks to identify the participant, session and

group IDs. Those IDs are included in the name of the log files, located in the “log” directory.

In the main user interface, five different views are available via a tabbed pane: situation, prediction,

decision, information and notes. Features of the experimental platform have been separated in five

views due to the need of recording in a log file how much time users spend doing specific subtasks

(situation assessment, inspection of mutual influences, note taking, etc.) while completing their

mandate.

A view that provides users with feedback at the end of a turn is also available. It will show to the user

the evolution of the situation during the last turn and the prediction errors he made. Finally, a view that

summarises the entire mandate history can be provided at the end of a mandate.

It should be noted that several indications can be shown to the user during the mandate regarding the

status of the simulator. For example, when waiting for other participants, an image is displayed that

informs the user about the current status of the system; at the end of a mandate, images can be

displayed in order to inform the user as to whether he succeeded or failed in completing the mandate. A

user will not be able to close any window that would terminate the simulation without reaching the end

of a mandate. There is only one way to terminate a mandate prematurely: pressing the CTRL+ALT+X

keys simultaneously. Doing so is equivalent to letting the situation evolve without allocating any action

point to interventions.

In order to fully customize the user interface of the experimental platform, the placement of the

variables’ labels can be changed by the user. Hitting the “CTRL+E” key switches from “normal” mode to

“editing” mode. In editing mode, variables’ labels can be moved around the user interface by dragging

them with the mouse. The main dialog can also be resized; for that purpose, simply move the mouse

cursor to the edge of the dialog. A “resize” cursor will appear. Then press the left mouse button and

drag the edge of the dialog to the desired size. Hitting “CTRL+E” will save the new layout and size to a

file (default is “config/layout.xml”, but it can also be configured in the editor), which will be reloaded

next time the experimental platform is executed.

The following sections present in detail how the interface should be used. The reference scenario is the

prototype of a complex counterinsurgency situation developed at DRDC Valcartier that includes nine

variables and in which the user can affect the situation via seven interventions.

2.1 Situation Tab

The Situation Tab (see Figure 1) displays the status of all variables that are involved in a situation. In

order to win the game in the context of the counterinsurgency scenario, the value of all variables must

be outside of the red region displayed on coloured indicators. The current variable’s value is indicated

graphically using a horizontal black line while the previous turn’s value is shown using a gray line. As

turns pass, the user can go back in time in order to examine the values of previous turns using the slider

 - September 2010 4

positioned at the bottom of the tab. When the situation tab does not display the current turn, it is

greyed out in order to indicate that it does not show values associated to the latest turn. Depending on

the game configuration parameters, the user is asked to make his predictions on the next variables’

values, or to make decisions on interventions, or both, before he can continue to the next turn by

pressing the button located in the tab corresponding to the last operation (decision or prediction). This

latter button is only enabled when mandatory predictions and/or decisions have been made. It should

be noted that when the platform is configured with a time-limit for each turn, the turn advances

automatically when the time limit is reached, even though predictions and decisions have not entirely

been completed.

Figure 1 - Situation Tab

2.2 Relations Tab

The Relations Tab (see Figure 2) provides a view of mutual influences on variables and allows for a user

to visualize the detailed relations. Each arrow drawn in the tab represents an actual mutual influence

from one variable to another. The “||” symbol on a line indicates that the influence will be applied on

the variable after a certain delay has passed (number of turns). In this tab, the user can show or hide the

 - September 2010 5

outgoing relations of one variable using the checkboxes located on the right side of the tab. Moving the

mouse cursor over a variable’s name grays out relations that are not outgoing of the selected variable,

i.e. those that are not direct influences. Similarly, moving the mouse cursor with the right button

pressed over a variable’s name grays out relations that are not incoming to the selected variable, i.e.

those that do not have a direct influence. In order to examine a relation between two variables, the user

must click on the relation arrow. If details of a mutual influence are not hidden, a chart will appear

showing the associated relation (see Figure 3).

Figure 2 - Relation Tab

On the chart, a red dot indicates the current variable’s value and its associated influence on the

specified variable. The delay before the influence takes effect is displayed below the chart when one is

specified. A “Details” button is available when the mutual influence (or conditional mutual influence)

owns a “Description” parameter. In case of conditional mutual influences, condition instances are

evaluated at the beginning of each turn, and condition labels are updated according to the result of this

evaluation (see the bottom of Figure 3). The values of the influence relation are updated according to

the user’s selection in the “Condition” dropdown menu. The current active condition is highlighted in

green.

 - September 2010 6

Figure 3 - Chart of Influence

2.3 Prediction Tab

For research and cognitive testing purposes, it can be very useful to elicit participants’ expectations on

how the situation will evolve in the next time-step. CODEM even makes it possible to create a prediction

task with no interventions required. The Prediction Tab (see Figure 4) allows the user to make his

predictions on the values of each variable for the next turn. Along with his predictions, the user can

indicate the level of confidence he has in the predictions. When the prediction confidence parameter is

set to “Global,” only one confidence level has to be entered, which is located right above the “Done /

Next Turn” button. The current (C) value of a variable and the predicted (P) value text fields use the

same color code as the coloured indicators displayed in the situation tab. The prediction tab may not be

present depending on the game configuration parameters. If present, the user must complete his

predictions before he can pass to the next turn. Likewise, when decisions must be made before

 - September 2010 7

predictions, the prediction tab will not be enabled until decisions have been made. Clicking on the

“Done” (or “Next Turn” depending on the active mode) button commits predictions entered during the

current turn and disables any further changes to predictions and confidence entries.

Figure 4 - Prediction Tab

2.4 Decision Tab

The Decision Tab (see Figure 5) allows the user to intervene in the situation using the available action

points of a given turn to apply interventions. In order to decide how many points to spend on each

intervention type, the user can explore effects of his intervention on different variables using the

“Show” buttons. Another element to take into account is that some variables in the situation provide a

number of action points for the next turn. The number of action points available depends on the

variables’ value.

When several participants are collaboratively working on a mandate (same “Side” parameter), they can

share action points with other participants of the same side. The participant to which action points

should be sent is selected via a drop down menu, and the number of action points is adjusted with the

up and down buttons. Clicking on the “Send” button sends the correct amount of action points to the

 - September 2010 8

selected participant. The total number of action points available and action points left are updated

according to the points sent / received.

At every point in time, the user can refer to the decisions he made in the previous turns using the slider

available at the bottom of the tab. When he is ready, the user spends some or all of his action points

using the green arrows. He can modify his decisions until he presses the “Done” (or “Next Turn”

depending on the active mode) button. A fraction of the action points that are unspent in a turn will be

available in the next turn, which is configured via the “UnusedAPTransfer.”

Figure 5 - Decision Tab

2.5 Info Tab

The Info Tab shows game history information in four sub-tabs. The first one, named “Messages” (see

Figure 6) displays messages that are added using information text in the default category. When an

information text is specified in another category, a corresponding tab is created. It should be noted that

information text that was added in the current turn is displayed in black, whereas text added in previous

turns are displayed in light gray in order to indicate that they are from past turns.

 - September 2010 9

Figure 6 - Info Tab (Messages)

The second sub-tab, named “Diagram” (see Figure 7), displays the evolution of the game variables. It is

possible to hide some of them using the checkboxes under the chart legend.

 - September 2010 10

Figure 7 - Info Tab (Diagram)

The sub-tab “History” (see Figure 8) displays in the same view the value of all variables and the decisions

made during each turn of the game. The slider should be used to go back in time.

 - September 2010 11

Figure 8 - Info Tab (History)

The last sub-tab, named “Feedbacks” (see Figure 9), provides history information of end of turn

feedback screens (more details about those screens are provided in Section 2.7). The slider is used to go

back in time, while the buttons “Next” and “Back” are used to navigate between the variable values

changes and the prediction error information.

 - September 2010 12

Figure 9 - Info Tab (Feedbacks)

2.6 Notes Tab

The Notes Tab (see Figure 10) can be used whenever needed by the user in order to take notes. If the

user needs to organise his notes, tabs can be created by clicking on the “+” tab. A name can be given to

a new tab at its creation. A tab can be destroyed by right-clicking on its title. Use the text field in the

lower part of the tab in order to write a note and the “Commit” button in order to commit the new note

to the notes history. The wall-clock time at which a note was committed as well as the current turn is

used to identify the moment when a user took a particular note. If a note was not committed at the end

of a turn, CODEM will automatically commit it.

 - September 2010 13

Figure 10 - Notes Tab

2.7 End of Turn Feedback Screen

At the end of each turn, a feedback screen can be displayed (see Figure 11) in order to help the user

understand which variables had influence on others and what have been the effects of his interventions.

In order to examine this information, the user needs to move the mouse cursor over the desired

variables. The actual number (preceded of “+” or “-”) specifies the absolute change for a given variable

during the last turn. Incoming arrows display the contribution of corresponding variables. When the

number in red is followed by “||n”, it means that the effect was delayed by “n” turns before being

applied on the variable in the current turn. The effect of interventions is found on the right of the end of

turn summary dialog. It displays the effect of every intervention on the variable over which the mouse

cursor is placed. Right clicking on one variable displays the effect that this variable had on others using

the same representation.

 - September 2010 14

Figure 11 - Feedback screen (End of turn Summary)

When the prediction tab is activated, another feedback screen (see Figure 12) is available. It can be

shown by clicking on the “Next” button. This view displays the new variables values and the predictions

made. The user can see how accurate he was in his prediction by looking at the difference between the

two values indicated in red, or in blue when the prediction was accurate. The user can click on the

“Back” button in order to go back to changes provenance. It should be noted that when predictions are

available, the “OK” button will only be enabled when the prediction error view has been visited.

 - September 2010 15

Figure 12 - Feedback Screen (Prediction Error)

2.8 Setting the Platform to Support Multiple
Participants

The experimental platform supports several participants that are making decisions in a shared situation,

either collaboratively or competitively. Indeed, the same infrastructure is used with player-specific

situation, relations, and intervention tabs whether participants are collaborating or competing. The first

step to accomplish in order to include multiple participants in one simulation is to define a distinct

action point structure and set of possible interventions for each player (see Section 0 describing the

editor). Participants, each having a specific role to play in the situation, are identified by a user name

and the host machine on which they will work (IP address
1

In order to be able to spawn user interfaces on remote machines, it is very important to start one and

only one “User Interface Dispatch Starter” server on each remote machine before starting the main

simulation application. This server actually spawns a user interface that is configured for the appropriate

participant, and afterwards controls the entire data exchange between the user interface and the

 or hostname).

1
 In order to find the IP address of a computer, run “ipconfig” in a command line and look for the IP address of the

network adapter that is currently connected

 - September 2010 16

simulator. It should be noted that the multi-participants platform uses Java Remote Method Invocation

(RMI) and that it will only work in local area networks unless appropriate network ports are opened. The

default port number is “2045”; otherwise, it can be configured with the “dispatchStarter.port” system

property. Note that when a port other than the default one is configured, the same system property

should be set on every Java virtual machine. Also note that every participant should have access to the

same version of executable files. If this is not the case, exceptions will be thrown during the objects’

marshalling process. For a step by step procedure on how to start CODEM for multiple participants, see

Section D.1.

2.9 Log Files

One of the main objectives in using the experimental platform with human participants is to analyse the

strategy they employ in their task to understand and influence a complex situation. Although the user’s

screen is typically captured in video, which can then be analysed a posteriori in order to evaluate various

metrics (e.g. the total time spent observing specific data, the number of times a given action is

performed), such an approach can be very time consuming and prone to error. In order to support

experimenters in analysing a participant’s actions during a session, logs are recorded to files; one for

each participant that contains several metrics, and another one that contains variables values and action

points allocated during a mandate. A detailed description of every log entry can be found in Appendix A.

2.10 Language Configuration

An experimenter has the ability to configure every single text label present in the user interface. For that

purpose, resource bundles (simple text files), which contain text labels that should be displayed in the

user interface, have to be created. System properties have to be set in order for the platform to

consider the right language configuration. By default, the user interface is displayed in English. In order

to use a specific resource bundle, add the following JVM arguments:

• -Dlanguage=the_language

• -Dcountry=the_country (optional)

• -Dvariant=the_variant (optional)

Or specify the above properties in the file “config/CODEM.properties”.

The file containing the labels can be modified via the scenario editor by choosing in the menu bar

“Config / Edit Labels”. For more information about building a new language configuration file, follow the

steps detailed in Appendix B.

 - September 2010 17

33 SScceennaarriioo EEddiittoorr’’ss UUsseerr GGuuiiddee

A scenario editor was built that allows configuring various features of the experimental platform (e.g.

visual appearance, enable/disable features) as well as the complex dynamic system (e.g. variables and

influences, interventions). This editor reads a configuration file that defines every single possible

parameter (i.e. name, type, description) in different parts of simulation entities, and then fills a user

interface with the parameter values found in a CDM scenario file that is opened and saved using the

“File” menu from the menu bar. Parameters can then be modified, variables and action points created /

removed, making it possible for users to build appropriate data structures that can be loaded directly

into the simulator via a CDM scenario file.

The next sections present an exhaustive list of parameters that one can set for every data structure used

to configure the experimental platform via the scenario editor. A screen capture from the scenario

editor shows a typical configuration of parameters. Parameters that are displayed in those screen

captures originate from a counterinsurgency / stability operations scenario that was developed in order

to demonstrate the capabilities of the platform.

As a general guideline for every parameter contained in the scenario editor, a label identifies the

parameter’s name, a text field contains the parameter’s value and a checkbox, when checked, enables

the actual parameter. When available (i.e., defined in the scenario editor configuration file), a tooltip is

shown as soon as the user positions the mouse over the label or text field, which provides a description

of the parameter (e.g. valid values, general instructions). Similarly, a “?” character besides the title of a

group of parameters means that a tooltip will be shown when the user positions the mouse over the

panel.

In order to provide greater flexibility to a scenario, it is possible to implement various conditions and

statements using Javascript expressions; conditions should return a Boolean value, whereas other

statements will manipulate variables or return integer values. Javascript expressions include several

attributes; one for each variable, referenced by their ID, and “iteration,” which is the current turn during

a mandate. The reference in an expression to other attributes will result in Javascript errors. However,

most common logic and arithmetic operators can be used straightforwardly.

 - September 2010 18

3.1 Generic Scenario Parameters

In order to edit a scenario, double-click on “CODEM_ScenarioEditor.bat” and open a CDM file via the

“File / Open” menu. A scenario firstly contains several parameters that are used to configure the

experimental platform’s main user interface appearance as well as features that will be enabled in it.

Figure 13 shows parameters that affect the main dialog, Figure 14 displays parameters that determine

conditions for the termination of a mandate, Figure 15 shows parameters that configure features

available in the dialog, and Figure 16 shows parameters that determine the behaviour of the interface

between turns and when the mandate is over.

Figure 13 - Scenario parameters "Main Dialog Parameters" group

Figure 14 - Scenario parameters "End of Game Parameters" group

 - September 2010 19

Figure 15 - Scenario parameters "Game Mode Parameters" group

Figure 16 - Scenario parameters "Transition and End of Mandate Parameters" group

Table 1 - Detailed parameters of a scenario

Name Type Valid values Description

Title String Any String Title shown in the title bar of the main user

interface of the experimental platform

Background Image String Any valid image file

name

File name and path relative to the root

directory containing an image that will be

shown behind the main control dialog box

 - September 2010 20

Background Sound String Any valid sound file

(wav or mp3)

File name and path relative to the root

directory containing a sound that will be

played in loop during the whole mandate

Click Sound String Any valid sound file

(wav or mp3)

File name and path relative to the root

directory containing a sound that will be

played every time the user clicks the mouse

Identify User Boolean True, False True: asks for participantID, sessionID and

groupID at the beginning of a mandate; False:

does not ask for user identification (default).

participantID, sessionID and groupID can be

set via system properties on the command

line (e.g. –DparticipantID=my_id)

Layout File String Any valid XML file

name

File name and path relative to the root

directory that contains the position / size of

the different variable labels part of the main

user interface

Random Seed Integer -1, ... A seed that initializes the random number

generator; -1: uses a seed that depends on

time (default); other integer: fixed seed

Max Turns Integer -1, ... Maximum number of turns that a mandate

can last. When reached, the mandate

terminates in neutral state

WinningCondition String Any valid Javascript

expression that

evaluates to a

Boolean

Javascript expression that will be evaluated

after each turn. When true, the mandate

terminates in winning state. Variables should

be referred to with their ID. Has priority over

neutral and losing state

WinningCondition.

custom

String Any valid class name

that implements

ConditionI

When successfully loaded, an instance of this

class will be evaluated after each turn. The

mandate terminates in winning state when it

returns true. Has priority over neutral and

losing state

LosingCondition String Any valid Javascript

expression that

evaluates to a

Boolean

Javascript expression that will be evaluated

after each turn. When true, the mandate

terminates in losing state. Variables should be

referred to with their ID. Has priority over

neutral state

LosingCondition.

custom

String Any valid class name

that implements

ConditionI

When successfully loaded, an instance of this

class will be evaluated after each turn. The

mandate terminates in losing state when it

returns true. Has priority over neutral state

Prediction Mode Integer 0, 1, 2 0: no prediction (default); 1: prediction first,

then decision; 2: decision first, then decision

End of turn feedback

mode

Integer 0, 1 0: feedback showing changes and provenance

of effects (default); 1: do not show

provenance of changes. Applies for both end

 - September 2010 21

of turn information in the info tab and the

summary at the end of a turn

DecisionTab Integer 0, 1 0: decision tab inactive (default); 1: decision

tab active

ActionPoints.Details String All, Contribution,

Available or None

In the decision tab - All: shows action points

contribution and action points available

(default); Contribution: shows only action

points contribution; Available: shows only

action points available; None: does not show

anything

RelationsTab Integer 0, ... Compose an integer with activated bits, 0:

inactive (default); 1: active + full features; 2:

remove chart feature; 4: remove condition

details feature; 8: remove condition

description feature

Relations.

EnableShowHide

Boolean True, False True: enables checkboxes for showing /

hiding relations in the relations tab (default);

False: disables checkboxes

InfoTab Integer 0, 1 0: inactive, 1: active (default)

InfoTab.summary Boolean True, False True: activate summary subtab in info tab;

False: deactivate summary subtab (default)

InfoTab.history Boolean True, False True: activate history subtab in info tab;

False: deactivate history subtab (default)

InfoTab.endOfTurn Boolean True, False True: activate end of turn subtab in info tab;

False: deactivate end of turn subtab (default)

NotesTab Integer 0, 1 0: inactive, 1: active (default)

Prediction

Confidence

String Yes, No, Global Yes: need to enter a confidence value in the

prediction tab for every variable; No: no need

to enter a confidence value in prediction tab

(default), Global: need to enter a global

confidence value in the prediction tab

HistoryEnabled Boolean True, False True: enables history in situation and decision

tabs (default); False: does not enable history

TimeLimit.Decision Integer -1, ... Number in seconds that imposes a time limit

for making a decision. Countdown starts

when decision tab is consulted for the first

time. -1: no limit (default)

TimeLimit.Turn Integer -1, ... Number in seconds that imposes a time limit

for completing a turn. Countdown starts

when the turn begins. -1: no limit (default)

EndDialogDelay Integer -1, ... Amount of time the end dialog is shown, in

milliseconds. -1 shows the dialog until it is

closed by the user when no

 - September 2010 22

endOfMandateSummary. Default: 5000

TurnTransitionDelay Integer 0, ... Amount of time the turn transition dialog is

shown, in milliseconds. Default: 3000

EndOfTurnFeedback Boolean True, False True: end of turn feedback screen is shown;

False: no feedback screen at the end of a turn

(default)

EndOfMandate

Summary

Boolean True, False True: end of mandate summary screen is

shown; False: no screen is shown (default)

TurnTransitionImage String Any valid image file

name

File name and path relative to the root

directory containing an image that will be

shown between the turns

“turnTransitionDelay” ms.

TurnWaitImage String Any valid image file

name

File name and path relative to the root

directory containing an image that will be

shown when waiting for other participants to

complete their turn

EndOfMandate

Image

String Any valid image file

name

File name and path relative to the root

directory containing an image that will be

shown when a mandate is over without

winning nor losing “endDialogDelay” ms.

WinningImage String Any valid image file

name

File name and path relative to the root

directory containing an image that will be

shown when a mandate is over in winning

state “endDialogDelay” ms.

LosingImage String Any valid image file

name

File name and path relative to the root

directory containing an image that will be

shown when a mandate is over in losing state

“endDialogDelay” ms.

Figure 17 shows controls that allow one to define which variables and action points will be instantiated

in a given scenario. On the left, variables and action points that are available but not activated for that

scenario can be found. Selecting such an item and clicking the “Add >” button declares an instance of

that type. The ID of a variable or action point is set at the time of their creation in the associated tabs.

Note that IDs should not contain any special character such as spaces. The “Label” parameter allows

specifying how variables and action points will appear in the user interface without any restriction. In

order to remove an agent instance from a simulation, a user should select it in the right column and click

the “< Rem.” button.

 - September 2010 23

Figure 17 - Scenario parameters "Instances" group

3.2 Description of Variables

A set of variables and their mutual influences define a complex situation that is updated after every

turn. The properties of variables should be defined with the scenario editor. Figure 18 shows controls

that are used to select, add and remove variables from the set of defined variables. Clicking the “Add”

button asks the user to name a variable. Removing a variable deletes the corresponding data structure.

Selecting a variable updates the value and enabled state of every single parameter associated to that

variable. It is possible to duplicate the data structure associated to a variable via the “Duplicate” button.

The user is then asked to name the new variable.

Figure 18 - Variable addition and removal controls

Simple parameters are associated to every variable (Figure 19). Those include minimum and maximum

values, the configuration of target values and the initial value of a variable. In particular, parameters

that specify the range of values associated to “green,” “orange,” and “red” categories are found in

simple parameters (Figure 20). More details on all the parameters can be found in Table 2.

 - September 2010 24

Figure 19 - Simple variables parameters

minGreen

minOrange

maxOrange

maxGreen

Figure 20 - Details of the color categories for variables values

Table 2 - Details of simple variables parameters

Name Type Valid values Description

InitialValue Integer MinValue,

MaxValue

Value that should be found within the range

MinValue and MaxValue that is the initial value of

that variable

MinValue Integer Any integer lower

than MaxValue

The minimum value of that variable

MaxValue Integer Any integer larger

than MinValue

The maximum value of that variable

 - September 2010 25

MinGreen Integer MinValue,

MaxValue

The minimum value that defines the green range

MaxGreen Integer MinGreen,

MaxValue

The maximum value that defines the green range

MinOrange Integer MinValue,

MaxValue

The minimum value that defines the orange range

MaxOrange Integer MinOrange,

MaxValue

The maximum value that defines the orange range

NoColor Boolean True, False True: remove green, orange and red ranges from

variables representations and fills the range with a

blue color; False: fills the range with specified

green, orange and red colors (default)

Uncertainty Integer 0, ... When not 0, the real value of a variable is found

inside a +/- uncertainty range around the

displayed value. Only affects values displayed in

the interface, not in the simulation. Default: 0

Label String Any valid String The label that identifies a variable in the user

interface

VisibleTo List<String>
2

Any valid list of

Strings

 [all]: visible to all users (default); [none]: visible to

nobody; [user1, user2]: list of participants for

which this variable will be visible in the interface

HideDetailsTo List<String> Any valid list of

Strings

[none]: hide details to nobody (default); [all]: hide

details to all users; [user1, user2]: list of

participants for which details of this variable will

be hidden (value not available) in the interface

IsMediating Boolean True, False True: when a variable is considered as a mediating

variable, representing it differently in the situation

tab, and removing it from prediction tab; False:

variable is not mediating (default)

IsAgent Boolean True, False True: when a variable is considered as an “agent”

variable, representing it differently in the situation

tab; False: variable is not “agent” (default)

Order Integer Any integer The number of appearance of that variable when

predefined layout is unavailable. Smaller values

are sorted first

Description String Any valid String A description of the variable that is shown as a

tooltip of variable labels in situation, relation and

prediction tabs
3

Computed

Value

String Any valid Javascript

expression that

evaluates to an

An expression that overrides the value set by

mutual influences. It is evaluated at the beginning

of a turn and takes into account the values of the

2
 A general guideline for lists is to put elements around bracket characters (‘[‘ and ‘]’), separated by a comma (‘,’)

3
 For descriptions that are longer than one line of text, new lines can be created by using the HTML notation. For

that purpose, begin the description with “<html>”, create a new line by inserting “<p/>” and end your description

using “</html>” (e.g. <html>First line <p/> Second line </html>). The same comment applies to every field that

acts as a description object in “Variables” and “Action Points”

 - September 2010 26

Integer previous turn. Computed values are processed in

the order set by the “Order” parameter

3.2.1 Mutual Influences

Variables influence each other via mutual influence relations. A mutual influence is a relation that

associates a relative change applied to a variable and the current value of a variable. As an example,

Figure 21 shows influence values. For instance, when the domain value is “10,” the influence is “0.”

However, when the domain value is “18,” the influence is “2.” The experimenter can configure the

opacity (how much details are shown) of a mutual influence in the main user interface in several ways.

Firstly, it is possible to hide completely a relation from the user. Therefore, the user will not be aware

that a relation between two variables exists. Secondly, it is possible to disable revealing details of the

actual relation to a user. Therefore, the user is aware of the presence of a relation but cannot access the

actual influence values. Thirdly, it is possible to display “dummy” relations that replace “real” relations.

Therefore, the user is aware of a relation that can exist or not in the simulation. It is the experimenter’s

role to specify the configuration of each relation, and to notify the participant accordingly via the

“description” parameter or information texts.

Figure 21 - Sample chart for the influence editor

 - September 2010 27

In order to set mutual influences with the scenario editor, one should look into the “Variables” tab in the

“Influences” section (Figure 22). Clicking on the “Add” button will ask the user to specify the variable for

which the mutual influence should be created. The actual variable should be selected from a combo box

that contains every instantiated variable (Figure 17). Clicking the “Remove” button will delete the

selected mutual influence. Clicking the “Change” button asks the user to choose a replacement variable

for the currently selected influence. More details on every parameter can be found in Table 3. Note that

clicking on the “Edit” button associated to the “Values” parameter will display a chart similar to the one

shown in Figure 21 in which values can be edited by the user. It is thus easier for a user to specify a

relation by dragging the cursor on a chart rather than modifying values by hand. The “Set” button is

used to set the number of values present in the domain, while clicking “Cancel” cancels any change,

“Reset” resets values to the state they were when the dialog was opened and “OK” commits values to

the scenario editor’s text field.

Figure 22 - Variables' mutual influences parameters

Table 3 - Details of "Influences" parameters

Name Type Valid values Description

Delay Integer 0, ... A delay introduced in the application of the mutual

influence. Shown in the chart dialog

Values List<Integer> Any list of

integers

The actual influence on the specified variable for

each value that the current variable can take. The

size of the list should be “maxValue-minValue+1”,

except for “dummy” relations that can be of any

size

Noise Integer 0, ... Random noise added to the influence value.

Default: 0

HideInfluence Boolean True, False True: hides the relation from the user interface;

False: shows the relation in the user interface

(default)

HideDetails Boolean True, False True: disables clicking the relation in the user

interface; False: enables clicking the relation in the

 - September 2010 28

user interface (default)

Dummy Boolean True, False True: displays a relation in the user interface but

does not consider it in the simulation; False: the

relation is considered in the simulation (default).

Dummy has priority over “real” relations for being

displayed in the user interface

Description String Any valid String A description of the current relation that will be

available in the chart dialog with the “Details”

button

3.2.2 Conditional Mutual Influences

In order for the mutual influence of a variable to change according to the situation’s state, it is possible

to specify “Conditional Influences” (Figure 23). For that purpose, a default relation can be specified

(“Default Relation” section) as well as one or several condition instances. Clicking the “Add” button in

condition instances will create a new data structure that stores condition instances and will

automatically assign an ID to it. The latter data structure contains a “Condition” parameter that is in fact

a Javascript statement
4

Table 4, which is evaluated to either “true” or “false.” shows a summary of most

frequently used Javascript operators. The first condition instance that is evaluated to true will be

considered. There is no specific order specification, so the scenario designer should make sure that

conditions are mutually exclusive, i.e. that only one is evaluated to true at the same time. When all

conditions are evaluated to false, the default relation is used. The “Label” parameter is used to replace

the condition statement when a user requests details about a conditional influence. It therefore

simplifies the statement that identifies a condition, but is optional. By default, the actual condition is

displayed. Excluding the “Condition” and “Label” parameters, the others have the same signification as

those contained in “Influences.” Adding and removing conditional mutual influences uses the same

principle as mutual influences. It should also be noted that conditional mutual influences have

precedence over mutual influences, which means that when conditional and normal influences affect a

given variable, the conditional influence has priority when calculations are performed in the simulator.

4
 For more details about the Javascript syntax, see https://developer.mozilla.org/en/Rhino_documentation.

External Java classes are limited to “java.lang.Math”. Note that there is a potential security breach here because

arbitrary code can be executed (http://codeutopia.net/blog/2009/01/02/sandboxing-rhino-in-java/)

https://developer.mozilla.org/en/Rhino_documentation�
http://codeutopia.net/blog/2009/01/02/sandboxing-rhino-in-java/�

 - September 2010 29

Figure 23 - Variables' conditional mutual influences parameters

Table 4 - Summary of Javascript operators

Operator Description

== Equality operator

!= Inequality operator

|| Boolean “or” operator

&& Boolean “and” operator

< Boolean “smaller than” operator

<= Boolean “smaller than or equal” operator

> Boolean “larger than” operator

>= Boolean “larger than or equal” operator

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

% Modulo operator

= Assignment operator

+= Combined addition and assignment operator

-= Combined subtraction and assignment operator

 - September 2010 30

*= Combined multiplication and assignment operator

/= Combined division and assignment operator

if(cond.) {code;} else

if{code;} else {code;}

Conditional statement – code returns a value (no return statement needed)

or manipulates variables

3.3 Description of Action Points

Action points allow a user to have an effect on how the situation will evolve in time via interventions on

the situation. At the beginning of each turn of a mandate, a number of action points is allocated to each

participant. This number typically depends on preset parameters and on the situation’s state. Action

points obey to the same principle as mutual influences except that the influence on a variable is not a

function of a variable’s value, but rather a function of the number of action points that are allocated on

a given intervention. A fraction of the action points that are not allocated during a turn will be available

in the following turn, which can be configured via the “UnusedAPTransfer” parameter. Adding and

removing action points in a scenario is performed using controls that are shown in Figure 24. A new or

duplicated action point data structure has to be named with a unique ID for future reference. More

details on parameters available in the configuration of action points can be found in Table 5.

Figure 24 – Action points addition and removal controls

Figure 25 - Action points base parameters

Table 5 - Details of parameters associated to Action Points

Name Type Valid values Description

MinimumPoints Integer 0, ... The minimal number of action points available

at the beginning of a turn. Contribution of

variables and unused action points are added

 - September 2010 31

to this number to calculate the total number

of available action points in a given turn

StartingAction

Points

Integer -MinimumPoints,

...

The initial number of additional action points.

Replaces variables contribution in the first

turn

UnusedAPTransfer Float 0.0-1.0 Proportion of unused action points

transferred to the next turn

Host String Any valid

hostname or IP

address

The host on which the specified participant

will be performing his work. Use “localhost” in

order to spawn the main user interface in the

simulator’s process. Note that only one user is

supported per computer

User Name String Any valid String A name identifying the user that will be part

of the main dialog’s title and the user’s log file

name

Sides List<String> Any valid list of

Strings

List of sides that this participant is part of.

Participants that are part of the same sides

can share action points. Default: [] (no sides)

Implementation String Any valid class

name that

implements

appropriate

interfaces

Specifies the class that implements an actual

participant. Local and remote participants are

distinguished, i.e. local-only participants

should implement UIDispatchAdapterI and

remote participants should implement

UIRemoteDispatchAdapterI. Default: “default”

uses the default implementation that displays

the standard user interface

3.3.1 Interventions

Interventions that a user can perform on the situation are also specified in the “Action Points” tab of the

scenario editor. Parameters include the minimum and maximum values as well as the relations defining

how interventions influence variables of a situation. Figure 26 shows the details of the interface

associated to intervention parameters in the scenario editor, while Table 6 and Table 7 provide

additional details regarding valid values and a description of every single parameter and intervention

effects respectively. Note that interventions can either influence variables through a default relation, or

through relations that are activated under certain conditions that depend on the variables’ values

(“Condition Instances”).

 - September 2010 32

Figure 26 - Interventions parameters

Table 6 - Details of basic Interventions parameters

Name Type Valid values Description

MinValue Integer Any valid Integer

lower than

MaxValue

The minimum value for that intervention. Note

that negative minimum values are special because

the neutral intervention happens when the value

is zero. Therefore, negative interventions are

tagged accordingly (“+/-” sign) in the user interface

MaxValue Integer Any valid Integer The maximum value for that intervention

 - September 2010 33

larger than

MinValue

Description String Any valid String A description of that intervention, which is shown

as the tooltip of the intervention’s label in the

main user interface

Hidden

Variables

List<String> Any valid list of

Strings containing

variable IDs

Intervention effects of specified variables are

systematically hidden (i.e., not shown to

participants). Empty list by default

HiddenDetails

Variables

List<String> Any valid list of

Strings containing

variable IDs

Intervention effects relation details of specified

variables are systematically hidden (i.e., the

presence of relations are shown, but not the

specific effects). Empty list by default

Order Integer Any valid Integer Intervention effects are ordered in the user

interface according to the order specified. Lower

values are sorted first

Label String Any valid String An intervention effect is identified with this label

in the user interface

Table 7 - Details of parameters associated to Intervention Effects

Name Type Valid values Description

Description String Any valid String A description of this intervention effect that is

shown when the user clicks the “Details” button in

the relation’s chart

Values List<Integer> Any valid list of

Integers

Specifies the intervention’s influence on the

current variable. The size of that list should be

“MaxValue – MinValue + 1”, except for dummy

interventions that can be of any size

Noise Integer 0, ... Random noise added to the intervention value.

Default: 0

Delay Integer 0, ... The delay before the influence is actually applied

on the variable’s value

HideInfluence Boolean True, False True: hides the intervention effect from the list

displayed to the user; False: adds the intervention

effect in the list (default)

HideDetails Boolean True, False True: disables showing the relation chart of

variable influence as a function of the intervention

value; False: enables showing the relation (default)

Dummy Boolean True, False True: the intervention effect is displayed to the

user but not taken into account in the simulation;

False: this is a real intervention effect (default)

Order Integer Any valid Integer The order in which intervention effects will be

presented in the dropdown menu. Lower values

are sorted first

Condition String Any Javascript

statement that

returns a Boolean

The condition under which a conditional

intervention effect is considered rather than the

default values relation

 - September 2010 34

Label String Any valid String A label that will be displayed instead of the actual

condition when a user requests for details about a

condition instance. Default: the actual condition

Values List<Integer> Any valid list of

Integers

Same as default values but for a conditional

intervention effect. Default values relation is

considered when all conditions return false

3.3.2 Variable Influence on Action Points

In a typical scenario, the number of action points to be dispatched by the user will change according to

the state of the situation. The contribution of each variable to this number is specified in the “Action

Points” tab of the scenario editor. Parameters available are shown in Figure 27, and additional details

can be found in Table 8.

Figure 27 – Variable influence on action points

Table 8 - Details of variable influence on action points parameters

Name Type Valid values Description

Values List<Integer> Any valid list of

Integers

List that specifies the contribution of a given

variable to the number of action points as a

function of its value. The size of that list should be

“variable.MaxValue – variable.MinValue + 1”,

except for dummy contributions that can be of any

size

Noise Integer 0, ... Random noise added to the influence value.

Default: 0

HideInfluence Boolean True, False True: hides the action point provenance from the

list displayed to the user; False: adds the action

point provenance to the list (default)

 - September 2010 35

HideDetails Boolean True, False True: disables showing the relation of action points

contribution as a function of the variable’s value;

False: enables showing the relation (default)

Dummy Boolean True, False True: the action point provenance is simply

displayed to the user and not taken into account in

the calculations; False: this is a real action points

provenance (default)

Description String Any valid String A description of that action points provenance that

is shown when the user clicks the “Details” button

in the relation chart

Order Integer Any valid Integer Action points’ provenances are organized in the

user interface according to the order specified.

Lower values are sorted first

3.3.3 Player-Specific Representation of Variables

In a scenario involving multiple participants, variables may not have the same meaning for every

participant. For that purpose, a player-specific representation (green, orange and red ranges) can be

defined for every variable, which is different for every participant (in the action points tab). Similarly, the

uncertainty that is displayed around a variable can be specified for every user. Specific representations

values are defined in the “Action points” tab of the scenario editor. Figure 28 shows a typical

configuration of a player-specific representation in the scenario editor. Clicking on the “Add” button

asks the user for which variable he wants to define a new player-specific representation of variable.

Clicking on the “Remove” button removes the selected specific representation. The signification of

parameters is the same as those established in Table 2.

Figure 28 – Player-specific representation of variables

 - September 2010 36

3.4 Description of Custom Events

Custom events allow a scenario developer to define events that will be activated under specific

conditions. Conditions are expressed in Javascript or using a custom class instance that implements

ConditionI. Custom events are extremely versatile in terms of configuration, because they can be

activated on a specific turn or not, and activated at the beginning or at the end of a turn. When an event

is not activated on a specific turn, it can be executed several times. In order to limit the number of

possible executions, a “repetitions” parameter can be specified, which will allow the custom event to be

executed “repetitions” times (or no limit when “repetitions = -1”). The effect of an actual event can

either be specified using Javascript code that will have access to the current variables value. Those

values can be manipulated in the code. If Javascript is not sufficiently expressive, custom classes can be

developed that will have access to every variable in the simulation. It should be noted that values should

be manipulated with care because this can cause potential inconsistencies in the simulation.

Figure 29 shows a typical configuration for a custom event. In this case, an instance of the “Insurgents

Strategy Execution” class is created and evaluated at the end of every turn. This class implements a

strategy for the insurgents; it tries to evaluate the state of the situation on the next turn without the

blue force intervention, and chooses the red intervention that will be the most favourable for the

insurgents’ side. Therefore, variables’ values are manipulated by the custom code execution.

As for the scenario editor, a custom event is added by clicking on the “Add” button and removed by

clicking on the “Remove” button. More details about every single parameter associated to custom

events are provided in Table 9.

Figure 29 - Custom events parameters

 - September 2010 37

Table 9 - Details of the Custom Events parameters

Name Type Valid values Description

Code String Any valid

Javascript

statement

The Javascript statement manipulates variables and

has access to every instantiated variable, referenced

with their ID. Sample code: “variable1 = variable1 +

4”

Code.custom String Any valid class

name that

implements

ExecutionI

An implementation of ExecutionI allows for more

sophisticated variables manipulation that cannot be

expressed with simple Javascript code. Custom code

has priority over normal code

Turn Integer -1, ... The turn in which the custom event will be executed.

“-1” when turn number does not matter (default)

Condition String Any valid

Javascript

statement that

returns a Boolean

The Javascript statement has access to every

instantiated variable, referenced with their ID, and

should return a Boolean. When True, the custom

event is executed; when False, nothing happens

Condition.

custom

String Any valid class

name that

implements

ConditionI

An implementation of ConditionI allows for more

sophisticated conditions specification that cannot be

expressed with simple Javascript code. Custom

condition has priority over normal condition

Text String Any valid String Information text that is displayed to users when the

custom event is executed. By default, does not show

any text. The text is shown to every user

Before Turn Boolean True, False True: the custom event will be executed before the

turn; False: the custom event will be executed after

the turn (default)

Repetitions Integer -1, ... When no turn is specified, the code can be executed

several times. This parameter limits the number of

repetitions. “-1” for no limit

Order Integer Any valid Integer When several custom events in the same turn, this

parameter sets the order in which they will be

evaluated/executed. Lower values are ordered first

VisibleTo List<String> Any valid list of

Strings

List of participant Ids to which the text, if not empty,

will be shown. Default: “[all]”

3.5 Description of Information Text

CODEM can notify users about what is happening in the situation or create prompts that request player

input via “Information Text”. Corresponding data structures can be specified in the “Info Text” tab of the

scenario editor. They include information messages that are shown to the user, or text prompts in which

the participant has to enter a value. After being shown to the user as a popup, the text can be added (or

not) to the appropriate category of a text pane which remains accessible at any time.

 - September 2010 38

Information text is typically configured in the scenario editor, as shown in Figure 30. In this example, a

prompt will be shown to the user with the question “When are you going to win?” at the beginning of

turn 5 and will be added to the “Prediction” category in the info tab. More details on the signification of

every parameter can be found in Table 10.

Figure 30 - Info text parameters

Table 10 - Details of Info Text parameters

Name Type Valid values Description

Text String Any valid String The text that is shown to the user

Turn Integer -1, ... The turn at which the info text should be displayed. -1

displays the info text each turn

Condition String Any valid

Javascript

statement

A Javascript condition that has to be true in order for

the info text to be displayed. Default: no condition,

activated by usual mechanisms

Display Boolean True, False True: shows a popup to the user before adding the

text to the info tab (default); False: hides the info text

popup from the user, but shows it in the info tab

Prompt Integer 0, 1, 2 0: the info text does not prompt the user (default); 1:

prompts the user for an answer and writes the text

and answer to the log and info tab; 2: prompts the

user for answer but only writes it to the log file

Order Integer Any valid

Integer

When several info texts are specified at the same

moment and turn, this parameter will determine their

order of appearance. Lower values are sorted first

Moment Integer 0, 1, 2, 3 0: info text is shown before turn (default); 1: info text

is shown after prediction; 2: info text is shown after

decision; 3: info text is shown after turn

VisibleTo List<String> Any valid list of The participants to which this info text will be

 - September 2010 39

participants available. Participants are referred to using their ID

Category String Any valid String The category of the info tab in which the current info

text should be added

Log Boolean True, False True: adds the info text to the log (default); False:

does not add the info text to the log

Timeout Integer 0, ... Number of milliseconds after which, following the

right moment, the info text will be shown to the user.

Default: “0”

3.6 Configuration of the Scenario Editor

It is possible to configure the scenario editor via an XML configuration file that defines every single

parameter in terms of its name, type and tooltip text that appears when the user moves the mouse

cursor over the label. The configuration file is located in “config/EditorConfig.xml” relative to the root

directory of CODEM. This can be useful to change the editor’s language if desired, or rename some

concepts (change turn for year or month) or expand some tooltips. Even though every single parameter

can be configured via this file, it is unadvised to do so. In fact, parameters can be added in the

“Scenario” tab without any consequence on the simulation. For example, in one extension that was

implemented in CODEM, there was a need to add the “Insurgents strategy” parameter, which is realized

with the following XML snippet placed under the “Scenario” element; the resulting user interface

elements in the scenario editor are shown in Figure 31:

<Group name="Insurgents Strategy" tooltip="Specific to COIN scenario">
 <Param name="Insurgents.allocation" type="string" tooltip="[Specific to COIN
scenario] Strength of insurgents' strategic strike"/>
</Group>

Figure 31 - Insurgents strategy parameters

It should be noted that once a parameter is added in a scenario, some Java code must handle it. Such

code can be written in extensions, as described in the following section.

3.7 Extensions

CODEM allows simulating situations composed of variables that influence one another, as well as

interventions that are controlled by the user. The latter can be completely accomplished without writing

a single line of code. Although a certain level of flexibility is available with the use of Javascript in

 - September 2010 40

conditions and code in custom events, there might be situations in which more complex processing is

required. For that purpose, the experimental platform contains “hook” interfaces that allow for loading

custom classes into the platform at runtime. Such classes should be developed with care because they

can introduce modifications to the dynamic properties of agents that compose a simulation.

Conditions and executions that can accomplish more sophisticated processing for specific uses have

access to the game history and the current situation. Extensions can be defined in two particular areas:

winning & losing conditions and custom events (condition and execution). The two interfaces that can

be implemented are:

- ca.lti.image_sce.scenariov2.coin2.hooks.ConditionI
o void init(Map<String, Object> paramet ers); Initialises the custom

condition. “parameters” provides a set of static scenario parameters;

o boolean evaluate(GameHistory history , Map<String, O bject>
parameters, DynamicParametersContainerI dynamicParams, R andomI
random); Evaluates the custom condition and returns true when the condition is

met, otherwise false. “history” provides the entire game history (variables values and

decisions), “parameters” provides a set of static scenario parameters, “dynamicParams”

provides a set of dynamic parameters (parameters that can be modified during the

simulation) and “random” provides a random number generator.

- ca.lti.image_sce.scenariov2.coin2.hooks.ExecutionI
o void init(Map<String, Object> paramet ers); Initialises the custom

execution. “parameters” provides the set of static scenario parameters;

o Map<String, Integer> evaluate(GameHistory history, Map<String,
Object> parameters, DynamicParametersContainerI dynamicParams,
RandomI random); Evaluates the custom execution. “history” provides access to

the game history, “parameters” provides a set of static scenario parameters,

“dynamicParams” provides a set of dynamic parameters (parameters that can be

modified during the simulation) and “random” provides a random number generator.

Returns a map of relative changes that should be applied on the variables values.

Simulation agents (variables and action points) can also be modified directly using static

object instances; this feature should however be used with care. For example, in order

to modify the number of available action points, update the “unusedActionPoints”

dynamic property.

Another type of extension makes it possible to add participants. The implementation class should be

specified in the “Action Points” tab of the scenario editor using the “Implementation” parameter. This

extension should be used in cases where the participant’s role is played by an external entity (e.g.

learning algorithm, another implementation of the user interface). Two interfaces can be implemented

in order to play the latter role:

- ca.lti.image_sce.scenariov2.coin2.ui.dispatch.UIDispatchAdapterI
- ca.lti.image_sce.scenariov2.coin2.ui.dispatch.UIRemoteDispatchAdapterI

 - September 2010 41

The difference between the two interfaces is that the remote one has to implement two additional

methods (“reset” and “fini”) so that several instances of the dispatcher can be started and stopped

successively. Therefore, the implementer should make sure that resources are cleared when “reset” is

called, and be ready for the UI dispatcher to be initialized again. When “fini” is called, no more UI will be

created and the simulator will terminate. Additional details on every method that needs to be

implemented are provided in Appendix C.

The next three sections describe three extensions that were implemented for demonstration purpose.

The first one implements a custom execution that adds a certain level of flexibility to insurgents in a

counter insurgency scenario (Section 3.7.1). The second one implements a custom winning condition

that triggers when the prediction errors become stable (Section 3.7.2). The third one implements an

algorithm for finding optimal solutions in a scenario (Section 3.7.3).

3.7.1 “Insurgents Strategy” Extension

This extension implements a strategy for insurgents that are able to adapt as a function of the situation.

Concretely, insurgents can influence the situation by directly changing the value of one variable per turn

(in addition to having other behaviours defined as mutual influences, which can change using

conditional mutual influences). The extent of this influence is determined by the actual level of

insurgency, and is evaluated using a Javascript statement. The context associated to the Javascript

statement contains only one variable identified by the name of the insurgent forces variables; the

statement should set the number of points allocated. For example, the following statement has the

result of allocating 1 point if the insurgency level is smaller or equal to 6, 2 points if the insurgency level

is smaller or equal to 13 and 3 points in other cases:

if(insurgency <= 6){1;} else if(insurgency <= 13){2;} else {3;}

Insurgents can directly influence the following variables: “Governance,” “Population Allegiance,”

“Media,” “Infrastructures,” “Criminality,” and “Local Forces.” The direct influence is chosen by

simulating what should happen in the next turn if the blue forces would not intervene in the situation,

and choosing the course of action that has the most advantageous outcome for the insurgents’ side.

3.7.2 “Stable Prediction Error” Extension

This extension implements a winning condition that is triggered when a participant’s mean prediction

error does not decrease anymore over a specified time window. It is hypothesized that during a

mandate, the prediction error at the beginning will be high, and will decrease down to a certain level as

turns pass and the participant’s understanding of the situation increases. So this is basically a stopping

criterion when asymptotic anticipatory performance is achieved in the context of a function learning

task.

 - September 2010 42

This extension can be configured using parameters defined in the scenario editor:

- “Anticipation.nbIterationsForError”: this parameter specifies the time window over which the

prediction error will be calculated

- “Anticipation.stopCondition”: this parameter specifies the stop condition expressed in Javascript

that should terminate the mandate. The attributes available in the Javascript context are the

following:

o “slope”: the slope of prediction error over a window of

“Anticipation.nbIterationsForError” turns

o “currentError”: the mean prediction error for the current turn

o “iteration”: the current iteration

Figure 32 shows how the mean prediction error should evolve as a function of turn time. The slope is

defined over a time window, and should be within the level specified in the stop condition.

Turn number

M
ea

n
Pr

ed
ic

tio
n

Er
ro

r

Time Window

Prediction Error’s Slope

Figure 32 - Mean prediction error as a function of turn number showing the prediction error’s slope in a time window

3.7.3 Genetic Algorithms for Finding Optimal Solutions

This extension implements a hook that replaces the standard user interface with an automatic decision

making algorithm. The allocation of action points is realized via a genetic algorithm that optimizes a

score variable. The actual genetic algorithm is implemented using the Evolver Excel add-on, which is

configured to explore the decision space in an effective manner. Therefore, a software infrastructure

was put in place so that CODEM can communicate with Excel in order to retrieve actions points

allocation and put back the score variable. This work is still in progress, but will be further detailed once

results are available. Since the hooking mechanism is very versatile, it would also allow the integration

of other automatic decision algorithms such as adversaries or collaborators.

 - September 2010 43

44 CCoonncclluussiioonn

In conclusion, an experimental platform that supports the simulation of complex situations with the

system dynamics formalism was developed. This platform allows experimenters to study human

sensemaking and decision making in a systematic fashion. The complex situation is expressed via a

scenario editor that allows modifying every single parameter straightforwardly. Those include

parameters associated to variables, action points and interventions, custom events and information

texts. A complex situation can be built without the need for users to write any Java code. However, the

platform provides software hooks that allow for custom classes to be loaded should they be needed for

more advanced use.

The experimental platform also provides a user interface that allows a user to visualize the current

status of a situation, make predictions about the state of variables in the next turn, make decisions on

interventions that influence the situation, take various notes, retrieve information about the past states

of the situation, and observe the changes that occurred on variables during a turn. In order to facilitate

the experimenter’s work, log files record actions performed by the user.

 - September 2010 44

55 RReeffeerreenncceess

Chein, M., & Mugnier, M. (2008). Graph-based Knowledge Representation: Computational Foundations

of Conceptual Graphs. Springer London.

Dörner, D. (1996). The logic of failure: Recognizing and avoiding error in complex situations. Reading,

MA: Addison-Wesley.

Lizotte, M., Bernier, F., Mokhtari, M., Boivin, E., DuCharme, M. and Poussart, P. (2008). Image:

Simulation for Understanding Complex Situations and Increasing Future Force Agility. The 26th Army

Science Conference, December 1-4, Orlando, FL.

Sterman, J.D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World, Irwin

McGraw-Hill, Boston, MA.

 - September 2010 45

AA.. LLoogg FFiilleess CCoonntteenntt DDeessccrriippttiioonn

Two types of log files are recorded during a mandate: the participant’s log and the game log. More

details are available in the following sections.

A.1 Participant’s Log Description

The human log contains a trace of which actions the user performed during a turn. The file name of the

human log follows this pattern: HYearMonthDay-HourMinuteSeconds-SimulationStartTime-User-

ParticipantID-SessionID-GroupID

Column Value Description

MSG_TYPE ACTION_POINT_AVAILABLE The number of action points available at the

beginning of a turn

SIM_TIME Integer The simulation time

TARGET -

VALUE Integer The number of action points

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE CONDITION_DETAILS_CLOSE The condition details' window for the

current chart has closed

SIM_TIME Integer The simulation time

TARGET String The selected condition

VALUE String The details about the condition

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE CONDITION_DETAILS_OPEN The condition details' window for the

current chart has opened

SIM_TIME Integer The simulation time

TARGET String The selected condition

 - September 2010 46

VALUE String The details about the condition

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE CONFIDENCE Confidence value about a variable has

changed

SIM_TIME Integer The simulation time

TARGET String Variable name

VALUE Integer The confidence value

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE DECISION An intervention changed for a variable

SIM_TIME Integer The simulation time

TARGET String Variable where more or less action points

are spent

VALUE Integer Action points assigned to the variable

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE DECISION_DONE The user has made his decisions for the turn

SIM_TIME Integer The simulation time

TARGET -

VALUE -

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE FINAL_DECISION The final value for an intervention

SIM_TIME Integer The simulation time

TARGET String Intervention for which decision was made

VALUE Integer Action points assigned to the intervention

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE FINAL_PREDICTION The final value for a prediction

SIM_TIME Integer The simulation time

TARGET String Variable for which the prediction was made

VALUE Integer Prediction made for variable

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE FINAL_CONFIDENCE The final value for the confidence

SIM_TIME Integer The simulation time

TARGET String Variable for which the confidence was set

VALUE Integer The confidence value

LOG_TIMESTAMP Date Timestamp of the log message creation

 - September 2010 47

MSG_TYPE FINAL_AP_AVAILABLE The final value of action points available

SIM_TIME Integer The simulation time

TARGET Integer Final value of action points available

VALUE Integer Final value of action points left

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE HIDE_VARIABLE Variable's outgoing relations are hidden

SIM_TIME Integer The simulation time

TARGET String Variable name

VALUE -

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE INFO New information added in the information

tab

SIM_TIME Integer The simulation time

TARGET String If info text was a prompt, the user's answer

VALUE String The new information message

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE NOTE The user added a note

SIM_TIME Integer The simulation time

TARGET String The note tab

VALUE String The note

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE PREDICTION The user changed its prediction for a variable

value

SIM_TIME Integer The simulation time

TARGET String Variable name

VALUE Integer The predicted value

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE PREDICTION_DONE The user has made his predictions

SIM_TIME Integer The simulation time

TARGET -

VALUE -

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE RECEIVE_ACTION_POINT Received a number of action points from

another participant

 - September 2010 48

SIM_TIME Integer The simulation time

TARGET Integer Total number of action points available

VALUE Integer Number of action points received

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE RELATION_DETAILS_CLOSE Details window closed

SIM_TIME Integer The simulation time

TARGET String Title of the relation window

VALUE String Details message

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE RELATION_DETAILS_OPEN Details window opened

SIM_TIME Integer The simulation time

TARGET String Title of the relation window

VALUE String Details message

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE SEND_ACTION_POINT Send a number of action points to another

participant

SIM_TIME Integer The simulation time

TARGET String The participant to which action points are

sent

VALUE Integer Number of action points sent

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE SHOW_VARIABLE Variable's outgoing relations are shown

SIM_TIME Integer The simulation time

TARGET String Variable name

VALUE -

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_ACTIVATED A new tab is displayed

SIM_TIME Integer The simulation time

TARGET String Title of the window or frame containing the

tabs

VALUE String Title of the tab

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_CREATED A tab is created

SIM_TIME Integer The simulation time

TARGET String Title of the window or frame containing the

 - September 2010 49

tabs

VALUE String Title of the tab

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_ELAPSED_TIME Time elapsed in a tab before going to

another. It includes time spent in sub

windows such as a chart

SIM_TIME Integer The simulation time

TARGET String Title of the tab

VALUE Integer Elapsed time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_REMOVED A tab is removed

SIM_TIME Integer The simulation time

TARGET String Title of the window or frame containing the

tabs

VALUE String Title of the tab

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_TOTAL_ELAPSED_TIME Time spent in a tab for the entire mandate

SIM_TIME Integer The simulation time

TARGET String Title of the tab

VALUE Integer Elapsed time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_TOTAL_FREQUENCY The total number of times a tab was

consulted

SIM_TIME Integer The simulation time

TARGET String Title of the tab

VALUE Integer Number of times the tab was consulted

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TAB_TURN_ELAPSED_TIME Time spent in a tab for the entire turn

SIM_TIME Integer The simulation time

TARGET String Title of the tab

VALUE Integer Elapsed time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TIME_DISPLAYED_CHANGE Time displayed in the user interface

SIM_TIME Integer The simulation time

TARGET String The tab title where a displayed time change

 - September 2010 50

occurs

VALUE Integer The actual displayed simulation time

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TURN_DONE The moment when “next turn” button is

pressed

SIM_TIME Integer The simulation time

TARGET -

VALUE Integer Elapsed time in milliseconds since beginning

of the turn

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE TURN_ELAPSED_TIME Time elapsed for the entire turn

SIM_TIME Integer The simulation time

TARGET -

VALUE Integer Elapsed time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_ACTIVE_CONDITION Change the active condition for a chart with

conditions

SIM_TIME Integer The simulation time

TARGET String The condition activated

VALUE -

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_CLOSE A window has closed

SIM_TIME Integer The simulation time

TARGET String Title of the window

VALUE -

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_ELAPSED_TIME Time spent in a window

SIM_TIME Integer The simulation time

TARGET String Title of the window

VALUE Integer Elapsed time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_OPEN A window has opened

SIM_TIME Integer The simulation time

TARGET String Title of the window

VALUE -

 - September 2010 51

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_TOTAL_ELAPSED_TIME Total time spent in a window in a mandate

SIM_TIME Integer The simulation time

TARGET String Title of the window

VALUE Integer Time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_TOTAL_FREQUENCY Total number of times a window was open

SIM_TIME Integer The simulation time

TARGET String Title of the window

VALUE Integer Number of times

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_TOTAL_PROP_VISITED Proportion of windows that were visited

SIM_TIME Integer The simulation time

TARGET String The type of window (or global)

VALUE Float Proportion of windows visited for type

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE WINDOW_TURN_ELAPSED_TIME Total time spent in a window in a turn

SIM_TIME Integer The simulation time

TARGET String Title of the window

VALUE Integer Time in milliseconds

LOG_TIMESTAMP Date Timestamp of the log message creation

A.2 Game’s Log Description

The game log only contains final values for a turn (i.e. if the user changes his predictions or decisions

multiple times during a turn, only the final prediction/decision will be logged). The file name of the game

log follows this pattern: GYearMonthDay-HourMinuteSeconds-SimulationStartTime

Column Value Description

MSG_TYPE FILENAME The current file name

SIM_TIME Integer The simulation time

VAR_NAME - -

VALUE String The current file name

USER -

 - September 2010 52

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE VARIABLE Variable value

SIM_TIME Integer The simulation time

VAR_NAME String The variable name

VALUE Integer The variable value

USER -

LOG_TIMESTAMP Date Timestamp of the log message creation

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE PREDICTION Variable value

SIM_TIME Integer The simulation time

VARIABLE String The variable name

VALUE Integer The variable predicted value

USER String The user id

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE UNCERTAIN_VARIABLE The variable's value has uncertainty

SIM_TIME Integer The simulation time

VAR_NAME String The variable name

VALUE Integer The uncertain variable's value

USER String The user id

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE PREDICTION_ERROR Prediction error value

SIM_TIME Integer The simulation time

VARIABLE String The variable name

VALUE Integer The variable prediction error value

USER String The user id

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE CONFIDENCE Confidence value

SIM_TIME Integer The simulation time

VARIABLE String The variable name (or global if only one)

VALUE Integer The prediction's confidence value

USER String The user id

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE END_TURN The end iteration

SIM_TIME Integer The simulation time

 - September 2010 53

VARIABLE -

VALUE -

USER String The user id

LOG_TIMESTAMP Date Timestamp of the log message creation

MSG_TYPE END_STATUS The end of mandate status

SIM_TIME Integer The simulation time

VARIABLE -

VALUE String The end status (WIN, LOSE, MAX_TURN)

USER String The user id

LOG_TIMESTAMP Date Timestamp of the log message creation

A.3 Summary Logs

The summary logs contain final values for each turn in the form of a history. Six types of files are

generated: variables, confidence, decisions, human, prediction error and predictions. The file name of

the summary log follows this pattern: SYearMonthDay-HourMinuteSeconds-SimulationStartTime-

SummaryLogType. For each summary log type, each column contains values for the corresponding turn:

- Variables: one row per variable; each column for the variable value

- Confidence: one row per variable, or only one for global confidence; each column for the

confidence value

- Decisions: one row per intervention; each column for the number of action points allocated

- Human: one row for prediction, notes, relations, decision, info, situation, one row for every

open window and one row for time needed to make decisions, predictions and complete a

single turn; each column contains the total number of milliseconds spent at performing the

corresponding operation

- Prediction error: one row per variable; each column contains the prediction error

- Prediction: one row per variable; each column contains the prediction

 - September 2010 54

BB.. TTeexxtt LLaabbeellss ooff tthhee UUsseerr

IInntteerrffaaccee

In order to create a new resource bundle, simply create a new file in the “config” directory with the

following nomenclature: CODEMLabels_[language]_[country]_[variant]. E.g. CODEMLabels_en_US_slang

• language: a valid ISO Language Code (http://www.loc.gov/standards/iso639-2/englangn.html)

(default: en)

• country: (optional) a valid ISO Country Code (http://www.iso.ch/iso/en/prods-

services/iso3166ma/02iso-3166-code-lists/list-en1.html) or empty

• variant: (optional) anything you want, for example you could have a variant named "slang"

In order to adjust the latter properties, simply add a corresponding property to

“config/CODEM.properties”.

Such a file should contain every single text label, as described in the following table.

Parameter Name Description Default Value

done
Label on the “done” button in decision and

prediction tabs
Done

not_available
Text shown when a variable is not available in the

situation tab
N/A

show
Label on the “show” button in the decision tab

that pops up relations graph
Show

commit
Label on the “commit” button in the notes tab that

adds new text to the current notes
Commit

default
Identifies the default relation in the relations

graphs
default

info.title Title of the info tab Info

info.turn Turn label in the info text prompts Turn

info.question_abbreviation Label that identifies a prompt question Q

info.answer_abbreviation Label that identifies a prompt answer A

info.history Title for the “diagram” tab in info tab Diagram

http://www.loc.gov/standards/iso639-2/englangn.html�

 - September 2010 55

info.default Title for the “messages” tab in the info tab Messages

info.summary Title for the “history” tab in the info tab History

info.end_of_turn Title for the “feedbacks” tab in the info tab Feedbacks

info.summary_variables Title for the “variables” group in the summary tab Variables

info.summary_decisions Title for the “decisions” group in the summary tab Decisions

note.title Title for the notes tab Notes

note.default_tab Title for the “default” tab in the notes tab Default

note.new_tab_name Prompt when creating a new tab in notes tab New tab name?

note.cannot_remove_default

_tab

Notification to user that it is impossible to remove

default tab

Cannot remove

default tab...

note.really_remove_tab Asks user for confirmation of removing tab Really remove tab

note.really_commit Asks user to really commit note when changing tab

Do you want to

commit your

note?

note.really_commit_title Title for popup message to commit note Commit note?

note.turn_number Label for turn number mention turn #

situation.title Title for situation tab Situation

situation.turn_number Turn number shown in situation tab Turn #

situation.next_turn Label of the “next turn” button Next turn

situation.slider_name History time slider in the situation tab Situation history

situation.current_value Tooltip of the current value in the situation tab Current value

situation.mediating_variables

_legend
Legend for describing mediating variables

Light gray

background =

mediating

variable

situation.agent_variables_leg

end
Legend for describing agent variables

Dark gray

background =

agent variable

situation.remaining_turn_tim

e
Legend for remaining turn time

Remaining turn

time

situation.remaining_decision

_time
Legend for remaining decision time

Remaining

decision time

relation.title Relations tab title Relations

relation.show_hide Variables visibility title Show / Hide

relation.show_all Show all variables button label Show all

relation.hide_all Hide all variables button label Hide all

relation.javascript_error Error message when scripting engine is unavailable

Cannot init

scripting engine...

conditional

influence will not

be available

relation.line_creation_error
Error message when a relation line could not be

built

Could not build

line...

relation.instructions Legend that is shown in the relations tab
Click on arrows to

view relations

 - September 2010 56

prediction.title Title of the prediction tab Prediction

prediction.legend_current Legend shown for the current value Current value

prediction.legend_current_a

bbreviation
Abbreviation of the current value text field C

prediction.legend_prediction Legend shown for the prediction Prediction

prediction.legend_prediction

_abbreviation
Abbreviation of the prediction value text field P

prediction.legend_confidence Legend shown for the confidence Confidence

prediction.predicted_value_t

ooltip
Tooltip shown for the predicted value text field Predicted value

prediction.current_value_too

ltip
Tooltip shown for the current value text field Current value

prediction.confidence_tooltip Tooltip shown for the confidence value text field Confidence

prediction.confidence_short Short title for confidence radio buttons Conf.

prediction.request_numeric
Notification when wrong value is entered in

prediction text field

Please enter a

numeric value...

prediction.request_between1
Notification for user entering a specific value

(part1)

Please enter a

value between

prediction.request_between2
Notification for user entering a specific value

(part2)
and

prediction.request_between3
Notification for user entering a specific value

(part3)
...

decision.title Title for decision tab Decision

decision.action_pts_available Title for number of available action points
Action points

available

decision.current_interventio

n
Title for current intervention entries

Current

intervention

decision.variable_contributio

n_desc
Title for contribution of variables to action points

Contribution of

variables to

action points

decision.chart_var_on_action

_pts.title1
Title for contribution chart (part1) Contribution of

decision.chart_var_on_action

_pts.title2
Title for contribution chart (part2) on action points

decision.chart_var_on_action

_pts.y_title
Y axis title for contribution chart

Contribution on

action points

decision.intervention_effects Title for effects of intervention
Effects of

intervention

decision.chart_var_on_var.tit

le1
Title for intervention effects chart (part1) Influence of

decision.chart_var_on_var.tit

le2
Title for intervention effects chart (part2) on

decision.chart_var_on_var.y_

title
Y axis title for intervention effects chart Influence on

decision.slider_name Title for decision time slider Decision history

decision.share_AP_with Title for action points sharing Share AP with

 - September 2010 57

decision.share_send Label for “send action points” button Send

decision.unavailable_relation
Message to the user when clicking on a relation

that is not available for details

Relation details

unavailable...

chart.delay Delay label in charts Delay

chart.condition Condition label in charts Condition

chart.details Label for “details” button in charts Details

chart.unavailable_condition Label shown when a condition is unavailable
Unavailable

condition

chart.active_condition Label for indicating the active condition ACTIVE

endmandate.variables_select

ion

Title in variables selection for end of mandate

summary

Variables

selection

endmandate.title Title for end of mandate summary dialog
End of mandate

summary

endmandate.x_title X axis title for end of mandate dialog Turn

endmandate.y_title Y axis title for end of mandate dialog Value

endmandate.all_var Show all variables in end of mandate All

endturn.title Title for end of turn summary dialog
End of turn

summary

endturn.changes Title for changes end of turn summary dialog Changes

endturn.prediction_error
Title for prediction error end of turn summary

dialog
Prediction error

endturn.next Label for “next” button in end of turn dialog Next

endturn.back Label for “back” button in end of turn dialog Back

endturn.legend_new_value_

abbreviation
Label for new value in prediction error N

endturn.legend_new_value Legend for new value in prediction error New value

endturn.changes_instructions
Instructions for changes dialog in end of turn

dialog

Move mouse over

a variable to

visualize details

on changes

endturn.intervention_of Title for other participants’ interventions Interventions of

turntransition.title Title for turn transition dialog Turn transition

turnwait.title Title when waiting for other participants
Waiting for other

participants

main.you_win Default message when winning You win!!!

main.you_lose Default message when losing You lose!!!

main.end_mandate Default message when end of mandate End of mandate

 - September 2010 58

CC.. DDeettaaiillss ooff tthhee

““UUIIDDiissppaattcchhAAddaapptteerrII”” IInntteerrffaaccee

Here is the Javadoc associated to the UIDispatchAdapterI interface that one needs to implement in

order to build a functional participant. Note that some are optional if you inherit from

UIDispatchAdapterA. They are marked with ** sign.

void initLabels(java.lang.String[] actionPointLabels,
 java.lang.String[] variableIDs,
 java.lang.String[] variableLabels,
 java.lang.String[] variableDescriptions,
 java.util.Map<java.lang.String,
 java.util.List<java.lang.String>>
 variablesQualifiers)

Init the action points, variable IDs and variable labels in the main UI frame.

Parameters:

actionPointLabels - labels associated to every action point. The order is important

variableIDs - IDs associated to variables. The order is important

variableLabels - Labels associated to variables. The order is important

variableDescriptions - Descriptions associated to variables. The order is important

variablesQualifiers - List of variable qualifiers indexed by variable ID in a map

** void setMinAPValues(int[] values)
Sets the minimum for action points

Parameters:

values - the minimum action point values in the same order as action point labels

** void setMaxAPValues(int[] values)
Sets the maximum for action points

Parameters:

values - the maximum action point values in the same order as action point labels

** void initGUI(java.lang.String sideName,
 java.lang.String userID,
 java.lang.String participantID,
 java.lang.String sessionID,

 - September 2010 59

java.lang.String groupID,
 java.util.Map<java.lang.String,
 java.lang.Object> parameters,
 java.util.Collection<ca.lti.image_sce.scenariov2.
 coin2.gen.components.AP> interventions,
 variablesInfluenceOnAP,
 java.util.List<> mutualInfluences,
 java.util.List<> conditionalMutualInfluence,
 java.util.List<java.lang.String> collaborators,
 ca.lti.image_sce.scenariov2.coin2.ui.
 callback.UIServerCallback serverCallback)

Initialize the main GUI.

Parameters:

sideName - appended to the title, which is provided by the scenario as a parameter

userID - the user ID

participantID - the participant ID, as specified at the beginning of a mandate

sessionID - the session ID

groupID - the group ID

parameters - the actual scenario parameters, indexed by parameter names

interventions - the list of interventions for the current user

variablesInfluenceOnAP - the provenance of action points, index by variable

mutualInfluences - the list of mutual influences for every variable

conditionalMutualInfluence - the list of conditional mutual influences for every variable.

collaborators - a list of collaborators with the current participant.

serverCallback - a reference to callback methods

** void setMaxValues(int[] values)
Set the max values for variables

Parameters:

values - the maximum variable values in the same order as variables IDs

** void setMinValues(int[] values)
Set the min values for variables

Parameters:

values - the minimum variable values in the same order as variables IDs

** void setMinGreenValues(int[] values)
Set the min values for considering a variable in the green range

Parameters:

values - the minimum green variable values in the same order as variables IDs

** void setMaxGreenValues(int[] values)
Set the max values for considering a variable in the green range

Parameters:

values - the maximum green variable values in the same order as variables IDs

** void setMinOrangeValues(int[] values)
Set the min value for considering a variable in the orange range

Parameters:

values - the minimum orange variable values in the same order as variables IDs

 - September 2010 60

** void setMaxOrangeValues(int[] values)
Set the max value for considering a variable in the orange range

Parameters:

values - the maximum orange variable values in the same order as variables IDs

** void setUncertaintyValues(int[] values)
Set the uncertainty values for each variable

Parameters:

values - the uncertainty values for variables, in the same order as variables IDs

** void setVisible(boolean visible)
Set the main frame visible or not

Parameters:

visible -

void setTurn(int turn)
Set the current turn

Parameters:

turn - the current turn

** void setActionPoint(int actionPoint)
Set the number of available action points.

Parameters:

actionPoint - the number of available action points

void setVariables(int[] variables)
Set the variables' value, ordered as specified with the "initLabels" call

Parameters:

variables - the variables values, in the same order as variables IDs

** void endMandate(java.util.Map<java.lang.String,java.lang.Integer>
endVariablesValues, int turn, String endStatus)

Notify the main user interface of the end of mandate, providing variables values.

Parameters:

endVariablesValues - variable values index by variable IDs

turn - the end turn

endStatus – the status at the end of a mandate

** void waitNextTurn()
Wait for the "next turn" button to be pressed

int getAP(int index)
Get the value of the decision made by the user for the given action point

Parameters:

index - the index of action point value that should be retrieved, as specified in action point

labels.

Returns:

 - September 2010 61

int getUnusedAP()
Returns the number of unused Action points

Returns:

int getPrediction(int index)
Get the value of the prediction made by the user for the given variable

Parameters:

index - the index of variable, as specified in order by variable IDs

Returns:

int getConfidence(int index)
Get the value of the confidence selected by the user for the given variable

Parameters:

index - - the index of variable, as specified in order by variable IDs

Returns:

** void addInfoText(ca.lti.image_sce.scenariov2.coin2.gen.components.
TurnInfoText infoText, int turn)

Add info text with the provided parameters.

Parameters:

infoText -

turn -

** void initFeedbackScreen(java.lang.String[] variableIDs,
 java.lang.String[] variableLabels,
 java.util.List<java.lang.String>
 disabledVariables,
 java.util.Map<java.lang.String,
 java.util.List<java.lang.String>>
 variablesQualifiers,
 java.lang.String actionPointID,
 int endOfTurnFeedbackMode,
 int predictionMode)

Initialize the end of turn feedback screen with the provided variable IDs and labels

Parameters:

variableIDs -

variableLabels -

disabledVariables -

variablesQualifiers -

actionPointID -

endOfTurnFeedbackMode -

predictionMode -

** void
waitFeedbackScreen(java.util.Map<java.lang.String,java.lang.Integer> currentV
alues,
 java.util.Map<java.lang.String,
 java.lang.Integer> previousValues,
 java.util.Map<java.lang.String,
 java.util.List<ca.lti.image_sce.scenariov2.
 coin2.gen.components.InfluenceValue>>

 - September 2010 62

influenceValueMap,
 java.util.Map<java.lang.String,
 java.lang.Integer> predictionValues,
 java.util.Map<java.lang.String,
 java.lang.Integer> actionPointsContributionMap)

Wait for the feedback screen to be closed by the user

Parameters:

currentValues -

previousValues -

influenceValueMap -

predictionValues -

actionPointsContributionMap -

** void createEndDialog(java.lang.String title,
 java.lang.String imageFileName)

Create an end dialog with the given title and image file name

Parameters:

title -

imageFileName -

** void showEndDialog(boolean visible)
Show or hide the end dialog

Parameters:

visible -

** void showEndDialog(boolean visible,
 boolean closeable)

Show or hide the end dialog

Parameters:

visible -

closeable - whether the end dialog is closeable

** void addEndSummaryVariableValues(java.lang.String label,
 float[] values)

Add variable values to the end summary dialog

Parameters:

label -

values -

** void showEndSummaryDialog()
Show the end summary dialog

** void createTurnTransitionDialog(java.lang.String title,
 java.lang.String imageFileName)

Create the turn transition dialog with the provided title and image file name

Parameters:

title -

imageFileName -

** void showTurnTransitionDialog(boolean visible,

 - September 2010 63

boolean fullScreen)
Show/hide the turn transition dialog and sets it fullscreen or not

Parameters:

visible -

fullScreen -

** void showTurnTransitionDialog(boolean visible)
Show/hide the turn transition dialog

Parameters:

visible -

** void createTurnWaitDialog(java.lang.String title,
 java.lang.String imageFileName)

Create the turn wait dialog with the provided title and image file name

Parameters:

title -

imageFileName -

** void showTurnWaitDialog(boolean visible,
 boolean fullScreen)

Show/hide the turn wait dialog and sets it fullscreen or not

Parameters:

visible -

fullScreen -

** void showTurnWaitDialog(boolean visible)
Show/hide the turn wait dialog

Parameters:

visible -

** void waitDone()
Wait for the user to shut down the user interface.

** void addActionPoints(java.lang.String fromParticipant,
 int nbPoints)

Add the specified amount of action points to the current participant.

Parameters:

fromParticipant - the participant from which action points are sent.

nbPoints - the number of action points sent

 - September 2010 64

DD.. QQuuiicckk SSttaarrtt RReeffeerreennccee GGuuiiddee

This guide gives a quick overview on how to execute various programs that are part of the experimental

platform, and describes the main operations that will lead to a functional executable simulation model.

D.1 Walkthrough

D.1.1 Single User

1) Ensure that the Java executable is in the path of your operating system (typically “bin” directory

of the Java runtime environment);

2) Launch the scenario editor via “CODEM_ScenarioEditor.bat”;

3) If you want to modify an existing scenario, choose “File / Open” and select the appropriate file in

the file browser. Otherwise, start by adding variables and action points to your scenario. Do not

forget to add instances of your variables and action points via the “Scenario” tab;

4) Save your work to an appropriate “.cdm” file;

5) Execute CODEM by double clicking on the scenario file that you just saved. If “.cdm” file

extensions are not associated to CODEM, return to the scenario editor and choose “Config /

Register CDM files.” Double clicking on a CDM file should now work fine;

6) Once you are finished with a mandate, press “CTRL+ALT+X” in order to close the CODEM user

interface.

D.1.2 Multiple Users (Cooperative or Competitive)

1) Ensure that the Java executable is in the path of your operating system (typically “bin” directory

of the Java runtime environment);

2) Launch the scenario editor via “CODEM_ScenarioEditor.bat”;

 - September 2010 65

3) If you want to modify an existing scenario, choose “File / Open” and select the appropriate file in

the file browser. Otherwise, start by adding variables and action points to your scenario. Do not

forget to add instances of your variables and action points via the “Scenario” tab;

4) For only one participant (action point), specify “localhost” in the “Host” parameter. This

participant will be referred to as “local.” For all the others, enter the IP address of the

respective computer on which the corresponding user will be located. Those participants will be

referred to as “remote”;

5) Save your work to an appropriate “.cdm” file;

6) On the computer associated to every remote participant, execute “CODEM_RemoteService.bat”

This will enable the computer to start a user interface remotely, as requested by the local

participant. There is no need to start this service on the computer associated to the local

participant. Also note that once the service is launched, there is no need to start it again every

time a new simulation begins;

7) On the computer associated to the local participant, double click on the “.cdm” file that contains

the scenario information. If everything is configured correctly, this should launch the CODEM

user interface on local computer, and one instance of the CODEM user interface on every

remote computer. Otherwise, error messages will pop up indicating what went wrong;

8) Once a mandate is over, every participant has to press “CTRL+ALT+X” in order to close the

CODEM user interface.

D.2 Important Files

The platform contains a hierarchy of files and directories that are of crucial importance for the platform

to work correctly. Their role is the following:

- “config” directory: this directory contains configuration files for the scenario editor

(“EditorConfig.xml”) and the variables layout (“layout.xml”). You can modify those files in order

to configure the operation of the editor as well as labels in the platform;

- “data” directory: this directory typically contains files that configure the experimental platform

(e.g. images, sound files) as well as the actual CDM simulation scenario

(“GeneratedScenario.cdm”);

- “lib” directory: this directory contains every Jar file that supports the experimental platform.

You should not directly modify files contained in this directory;

- “logs” directory: this directory contains log files that are associated to every single mandate;

- “CODEM.exe”: this file executes the experimental platform given the “GeneratedScenario.cdm”

file that is currently located in the “data” directory, without displaying any output console;

- “CODEM.bat”: this file executes the experimental platform given the “GeneratedScenario.cdm”

file that is currently located in the “data” directory, and displays an output console;

- “CODEM_RemoteService.bat”: this file executes the service that starts a main user interface on

a remote computer. You should start it on every remote computer involved in a collaborative /

competitive mandate;

 - September 2010 66

- “CODEM_ScenarioEditor.bat”: this file executes the scenario editor. By default, the scenario

editor opens an empty scenario. You can specify the file name you want to open on the

command line.

D.3 Important Operations in the Experimental
Platform

Once a scenario is generated by following the steps listed in the previous section, a simulation can be

executed. The simulator can be started via the “CODEM.exe” file, which loads a default scenario, or by

double-clicking on a CDM file. When several participants are involved in a mandate, do not forget to

start “CODEM_RemoteService.bat” on every remote computer. Once the main user interface shows up,

the “Situation” tab will be displayed. Depending on the game mode, other tabs will be available in the

user interface. Some might be disabled, meaning that prior operations have to be completed before

they can be accessed. For example, when prediction needs to be entered before making decisions, the

decision tab will remain greyed out until the “Done” button has been clicked in the “Prediction” tab. In

the “Relations” and “End of turn feedback” dialog, you can observe both incoming and outgoing

relations. Use the right mouse button in order to switch modes.

The placement of the variables’ labels can be changed through by the user. Hitting the “CTRL+E” key

switches from “normal” mode to “editing” mode. In editing mode, variables’ labels can be moved

around the user interface by dragging them with the mouse. The main dialog can also be resized; for

that purpose, simply move the mouse cursor to the edge of the dialog. A “resize” cursor will appear.

Then press the left mouse button and drag the edge of the dialog to the desired size. Hitting “CTRL+E”

will save the new layout and size to a file (“config/layout.xml”), which will be reloaded next time the

experimental platform is executed.

In order to refrain participants from exiting the platform inadvertently, the main dialog is not closable

via the well-known “X” button. Indeed, the “CTRL+ALT+X” key must be pressed in order for the platform

to be closed, which will also release several resources and close open files. Log files will also be written

to disk, which will be accessible in the “logs” directory. Being formatted in comma-separated values, log

files can be opened in Excel or with any other software that supports this file format.

D.4 Troubleshooting of the Experimental Platform

Q1: The platform does not start when I execute the “.exe” file. What should I do?

A1: Make sure that the Java executable is in your “Path” environment variable. If it is the case but the

platform still does not start correctly, run the “.bat” in the command line and look for error messages in

the console.

 - September 2010 67

Q2: The scenario editor does not behave as it should, what is happening?

A2: You should name the variables and action points using only letters and numbers. Please try to avoid

symbols and space characters as they are not supported in XML Ids. You can keep the fancy characters

to the “label” parameter.

Q3: Remote user interfaces do not show when I start the simulator. Why is that?

A3: You should first check if the Remote UI Dispatch Starter Server is running on remote computers, and

if so try to restart it. You should also check whether you specified the correct IP addresses / hostnames

of remote computers. If all of this is correct, try to deactivate the Windows (or Linux) firewall so that the

server ports are not blocked or add an exception to your firewall configuration. Otherwise, see the

console output and send the result to frioux@ltinfo.ca.

Q5: I want to build an extension, how should I proceed?

A5: It is suggested that you add your extensions in a separate Jar file. You will then not be able to use

the executable file, but you can definitely use the “.bat” in order to execute the platform. Do not forget

to add your .jar to the classpath. You can create your extension class by implementing appropriate

interfaces and using available Java objects with the specified API, located in CODEM.jar.

mailto:frioux@ltinfo.ca�

 - September 2010 68

EE.. FFrroomm CCoonncceeppttuuaall

RReepprreesseennttaattiioonnss ttoo SSyysstteemm

DDyynnaammiiccss SSiimmuullaattiioonn

In order to build a generic version of the platform, tools that are part of the IMAGE project were

exploited. CoGUI was used to represent a system dynamics model using agents, and the generic agent-

based simulator is used as a simulation engine. CoGUI is an all-purpose knowledge representation tool.

Therefore, it allows for the representation of any kind of knowledge using concepts linked by relations.

However, in order for a set of graphs to be of any use, they need to be minimally structured such that a

graph interpreter will be able to figure out what to generate, in terms of Java source code and XML

elements, when it encounters a given concept / relation configuration. The following sections will

introduce how to represent knowledge in CoGUI, and more specifically how to represent an agent-based

simulation scenario. Then, the source code and XML scenario generation process will be presented for

the generic agent-based simulator. The final section will introduce entities that need to be described in

conceptual graphs in order to build a system dynamics simulation.

E.1 Conceptual Representation with CoGUI

Being an all-purpose knowledge representation tool, CoGUI allows for any kind of knowledge to be

conveyed in a graph. The first step in building a conceptual graph with CoGUI is to define a vocabulary,

or “concept type hierarchy.” The vocabulary is actually a hierarchy that defines a set of concepts that

will be allowed being added to a conceptual graph. A similar hierarchy has to be defined for relations

that link two or more concepts together. In Figure 33, the “relation type hierarchy” is displayed on the

upper left, the “concept type hierarchy” is shown on the upper right and the instance of a conceptual

graph that uses the actual relation and concept hierarchies is shown at the bottom. For more details on

the notation, please refer to the CoGUI user guide.

 - September 2010 69

Figure 33 - Example of a conceptual graph in CoGUI

E.2 Agent-Based Simulation Using Conceptual

Representations

A custom agent-based simulator was developed and integrated in IMAGE. It can simulate virtually any

kind of scenario that involves autonomous entities. Depending on the role of an entity, it will be one of

the following types: agent, patient or decor. Agents own static and dynamic properties and they can act

on their environment through behaviours that are activated either by motivations (condition that is

verified) or via reflexes (change of a dynamic property). Patients also own static and dynamic properties

but they can only act on their environment through behaviours that are activated via reflexes. Decors,

on the other hand, only own static properties and they cannot act on their environment nor be

 - September 2010 70

modified. Behaviours associated to agents and patients manipulate dynamic properties at every time

step in order to update entities. This is where the actual user-written source code that defines how and

when an entity will modify its environment is located.

An original contribution of IMAGE is the complete model transformation infrastructure that allows

conceptual representations to be transformed to an actual executable scenario that is implemented

using the custom agent-based simulator. For that purpose, an entire vocabulary and semantics was

defined, resulting in conceptual graphs that can be interpreted by the scenario transformer. Figure 34

details the scenario generation process that is triggered by a user who has defined a scenario via well-

constructed conceptual graphs. In order to trigger the scenario generation process, right click on a

scenario graph located in the “Scenarios” category and choose the “Generate scenario” item. Note that

in addition to Java skeleton classes that define entities, properties, behaviours and stimulations, an XML

scenario file is built that contains values associated to properties and scenario configuration parameters.

For more details on how to build a scenario using the process described in this section, please refer to

the scenario generator user guide.

 - September 2010 71

CoGUI

CoGUI
conceptual

Graphs

conceptual
graph

common
model

- Scenario
- Simulation entities
- Behaviours
- Concepts hierarchy

Contains

Intermediate objects
that are easy to
manipulate

Contains

Scenario Generator

scenarioV2
XML

*.xml

*.java

Java class
description
& context

*.class

Java XML Binding
objects

Contains

Actual XML
content

Contains

Required data for
generating java
source code

 Contains

A user triggers the conversion of
every single conceptual graph

with the “scenario graph”
property checked into a common

conceptual graph model

Common data model is passed
to the scenario generator, from

which it extracts simulation
entities, behaviours, simulation
cycles and entity components.

Corresponding class descriptions
are created, as well as JAXB

objects that are filled with values
extracted from concepts

Source code is generated
from templates with the

Apache Velocity toolkit for
static & dynamic
properties, entity

components, simulation
cycles and behaviours

Source code is compiled
with an automatic build

using an Ant script

An XML file is created via
the JAXB marshaller class,
and validated against the

XML schema

Simulator V2

Initial
simulation

state

Live Java
objects

Contains Initial values
loaded with JAXB

 Contains
Instances of
generated classes

The simulator loads the
XML scenario file, which
contains all necessary

information for initializing
the simulation state and

instantiating static &
dynamic properties,

behaviours and simulation
cycles

The user writes his code in
implementation classes

using Eclipse

Figure 34 - Scenario generation process in IMAGE

E.3 Agent-Based System Dynamics Simulation

The current mandate is to develop an experimental platform that will study how humans deal with

complex systems / situations. For that purpose, the generic agent-based simulator developed as part of

IMAGE is used. Similar to another knowledge representation and simulation program called the

Sensitivity Model (Vester, 2007), the experimental platform uses a system dynamics simulation

formalism in order to perform calculations on the modeled complex system. In fact, the current

platform is based on a model that contains variables linked by mutual influence relations, and action

points that are allocated by a user to various interventions in order to influence the variables. One

 - September 2010 72

additional requirement of the experimental platform is that the user should not have to write any code

in order for the resulting scenario (generated code and XML configuration file) to be functional.

Fortunately, the generic agent-based simulator of IMAGE was designed such that it is possible to

execute behaviours on child types, thanks to inheritance of entities types. Finally, the experimental

platform must create logs of events and user behaviours in order to gain insights into the sensemaking

and decision making process of participants.

At the functional level, CoGUI is started via the “CoGUI.bat” file. A set of conceptual graphs is contained

in files that have the “.cogxml” extension. You can either load a complete previously built set of graphs

or start of a new scenario from a template by loading the file:

“scenario/COINScenario_template.cogxml”

The latter file contains the basic conceptual structures that are needed in order to generate a fully

functional complex situation scenario at the simulation level.

The set of conceptual graphs that model a complex situation is composed of several “fixed” graphs that

should not be modified by a scenario developer. They are clearly identified in the graphs hierarchy that

is available in CoGUI (with the “do not touch” mention). On the other hand, the graph hierarchy has to

contain one “VariableAgent” graph for each defined variable, and one “ActionPoint” agent for each set

of interventions that are available for a given participant. Figure 35 shows a sample hierarchy of

conceptual graphs that define nine variables (V1-V9) and two potential participants (ActionPointBlue

and ActionPointRed). The “AbstractAgents” category contains parent graphs that define the structure of

actual agent instances, which can be ActionPoints, Variables, CustomEvents and InfoText. One graph is

defined for every variable and action point, whereas all info text and custom events are added to the

same graph. Moreover, instances of variables and action points are declared in the “Scenario”

conceptual graph, as well as all the parameters that are used to configure the content of the actual user

interface with which participants will have to interact.

 - September 2010 73

Figure 35 - Conceptual graph hierarchy from the experimental platform

Conceptual graphs that define agents’ behaviours (category “Description of Behaviours”) should not be

modified by the user, so is their scheduling in the scenario graph. Behaviours are configured to be

executed at appropriate moments during the simulation, and they have been implemented such that a

scenario designer can add as many variables and participants as he wants. The layout of the user

interface changes according to the number of variables and action points, and the platform supports the

distribution of participants over a local area network.

In terms of inner workings, the behaviours have the following roles:

- ActionPointDispatch (on ActionPoint agents): the user interface is updated to the current

variables values for a given participant and the behaviour waits until the participant clicks the

“next turn” button;

- ActionPointUpdate (on ActionPoint agents): the number of available action points is updated

for a given participant;

- DisplayInfoText (on InfoText agent): the info texts that need to be displayed during the current

turn are retrieved and sent to the main user interface;

- ExecuteEvents (on CustomEvent agent): custom events are executed if their execution

condition is verified. Variables are updated accordingly;

 - September 2010 74

- Influence (on Variable agents): the influence of variables on other variables (delayed or not) is

calculated and values are accumulated in an appropriate data structure. Variables are not

modified at this time;

- Integration (on Variable agents): the variable is modified according to the accumulated values

calculated by the “influence” behaviour.

Finally, behaviours are scheduled in the following sequence:

Execute events
before

Display InfoText

ActionPoint
update

ActionPoint
dispatch

Variable influence

Variable
integration

Execute events
after

For each action point

For each action point

For each variable

For each variable

Before turn After turn

Win/lose?No

Mandate over

YesStart

Figure 36 - Sequence of behaviours executed in the custom agent-based simulator

The sequence starts with an initial simulation state that is loaded from an XML scenario. The “Before

turn” method is executed that is owned by the main simulation cycle. Then, behaviours that are

associated to every instantiated agents are executed with the order specified in Figure 36. The “After

turn” method, associated to the main simulation cycle, is executed after the execution of every

behaviour. This includes the evaluation of winning and losing conditions. When either one of those

conditions is true, the mandate is over. Otherwise, the simulation cycle continues to the next turn.

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified.)

1. ORIGINATOR (Name and address of the organization preparing the document.)

 LLTTII IInnffoorrmmaattiiqquuee eett ggéénniiee

 22770000,, DDee CCaarrtthhaaggèènnee

 QQuuéébbeecc,, QQcc

 CCaannaaddaa

 GG22BB 55MM44

2. SECURITY CLASSIFICATION
 (Overall security classification of the document,

including special warning terms if applicable.)

 UUnnccllaassssiiffiieedd

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U) in
parentheses after the title.)

CCOODDEEMM UUsseerr MMaannuuaall

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

RRoouuxx,, FF..,, aanndd GGaaggnnoonn,, JJ..--PP..

5. DATE OF PUBLICATION (month and year of publication of document.)

SSeepptteemmbbeerr 22001100

6. NO. OF PAGES (Including Annexes, Appendices and DCD sheet.)

7744

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g.
interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

 CCoonnttrraacctt rreeppoorrtt

8a. PROJECT OR GRANT NO. (If appropriate, the applicable research and
development project or grant number under which the document was
written. Please specify whether project or grant)

8b. CONTRACT NO. (If appropriate, the applicable number under which the
document was written)

9a. ORIGINATOR’S DOCUMENT NUMBER (Official document number by
which the document is identified by the originating activity. Number must
be unique to this document.)

9b. OTHER DOCUMENT NOS. (Any other numbers which may be assigned
to this document either by the originator or the sponsor.)

CCRR 22001100--551188

10. DOCUMENT AVAILABILITY (Any limitation on further distribution of the document, other than those imposed by security classification.)

 (xx) Unlimited distribution

 () Distribution limited to defence departments

 () Distribution limited to defence contractors

 () Distribution limited to government

 () Distribution limited to Defence R&D Canada

 () Controlled by Source

11. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the Document
Availability (10). However, where further distribution (beyond the audience specified in (10) is possible, a wider announcement audience may be selected.)

UUnnlliimmiitteedd

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DDRRDDKKIIMM – DDeecceemmbbeerr

22000099

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

12. ABSTRACT (Brief and factual summary of the document. May also appear elsewhere in the body of the document itself. It is highly desirable that the
abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the
information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). May be in English only).

13. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases characterizing a document and could be helpful in cataloguing

it. Should be Unclassified text. If not , the classification of each term should be indicated as with the title. Equipment model designation, trade name, military
project code name, and geographic location may be included. If possible, should be selected from a published thesaurus. e.g. Thesaurus of Engineering and

Scientific Terms (TEST) and that thesaurus-identified.)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

Canada’s Leader in Defence

and National Security

Science and Technology

Chef de file au Canada en matière

de science et de technologie pour

la défense et la sécurité nationale

www.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

